First Stars

Outline

in the

First Structures

Umberto Maio

Italian National Institute of Astrophysics (INAF) Gas evolution atoms and molecules

Simulations N-body hydro stellar evolution non-equilibrium chemistry star formation and feedback

Results

 Ω parameters, tdepl, Z, UVBs

Rationale: Understand the drivers of cosmic gas evolution, high-redshift galaxy formation and the role of feedback effects for popIII regimes over cosmological epochs

- → Formation epoch of high-*z* objects?
- → Has cosmic gas enough time to collapse?
- \rightarrow What drives HI and H₂ evolution?
- → What is the role of early populations (popIII)?
- → What are the effects of different feedback/IMFs?
- → How do they impact gas metallicities and BH formation?

Requirements: Study thermal and chemical properties of the cosmic medium and cold gas in the most *general conditions*

Techniques: Cosmological hydrodynamic and chemical numerical simulations

Primordial environments

Small dark-matter haloes hosting

H-cooling haloes: $T_{vir} \ge 10^4 \text{ K}$ H₂-cooling haloes: $T_{vir} < 10^4 \text{ K}$

molecular and metal cooling

ightarrow gas in-fall and star formation

PopIII regimes

pristine or very metal poor mass range: ? ? ? explosion energies: ? ? ?

driving reionization: ???

early MBH seeds: ???

For a complete picture

— follow gravity and hydrodynamics <u>coupled</u> to molecule formation and metal production from stellar evolution through cosmic time

molecules determine <u>first</u> gas collapsing events

metals determine subsequent structure formation

stellar evolution determines <u>yields</u>, γ and <u>timescales</u>

(Springel, 2001, 2005; Dolag+2009; Tornatore+2007, 2010; Maio+2007, 2010, 2016, 2019, 2022, 2023; etc.)

Cold-gas simulations "ColdSim"

No-UV HM-HISSmed-DB2 HM-HISSmed-WG HM-HISSmed-3b HM-HISSmed-H⁺₂ HM-HISSmed-none HM-HISSmed-cat-75-Zevol HM-HISSmed-cat-75-Zevol-pe HM-HISS-cat-40-Zevol HM-HISS-cat-75-Zevol HM-HISS-cat-120-Zevol HM-HISS-cat-Tcmb-Zevol HM-HISS-cat-Tbeta-Zevol HM-HISS-cat-75-0.01Zsun HM-HISS-cat-75-Zsun HM-cat-75-Zevol HM-HISSmed-cr HM-HISSmed-cr-P18 HM-HISSmed-cr-P18sfr

Simulation runs including relevant gas physical and chemical processes

'Non-equilibrium' chemistry, H, D, He and H₂ channels, H₂ grain catalysis, PE heating, CR heating, gas HI/H₂ selfshielding, UVB, IMFs for popIII-popII SE and metal enrichment from PISN, SNII, AGB, SNIa...

NB: No HI/H₂ partition recipe adopted

Time-dependent HI and H2 abundances are calculated from gas T, Q and Z at each timestep

. . .

HM-1 HM HM-HISS HM-0.5 HM-HISSmed (ref) HM-0.01 P19 HM-w700 P19-HISS P19-HISSmed HM-wf FG20 HM-Chabrier FG20-HISS HM-1-Chabrier FG20-HISSmed FG20thin P19-1 HM-std P19-Chabrier HM-HISSmed-std P19-1-Chabrier HM-HISSmed-H2

Details in Maio, Péroux, Ciardi 2022

. . .

Distribution of atoms and molecules

Entropy

HI

Reproduce expected vs. observed $\Omega_{neutral}$ and Ω_{H_2} for different UVBs, w or w/o HI/H2 shielding, HI/H2-based SF...

Maio, Péroux, Ciardi 2022

Expected vs. observed depletion times for different UVBs w or w/o HI/H₂ shielding

Early depletion times are short (tdepl<<tH) and dominated by molecular gas!

On the origin of H₂ contributions from different physical/chemical mechanisms

H₂ formation channels

Early star formation and popIII regimes

Maio+2010,2011; Biffi & Maio 2013

Radial distribution

Radial fractions of popII ($Z \ge Z_{crit}$) and popIII ($0 < Z < Z_{crit}$) enriched gas in the most massive halo at $\sim 10 - 1000$ pc (physical)

(Maio et al., 2011b)

Parameter dependences

Mass ranges for popIII IMF and/or massive SN have significant impacts:

Larger masses → Shorter stellar lifetimes → Earlier enrichment → Shorter "popIII epoch"

Gas metal abundance ratios

 $z \simeq 3$

DLA data: Dessauges-Zavadsky et al. (2001), Becker et al. (2012); Cooke et al. (2015); Noterdaeme et al. (2008, 2012), Srianand et al. (2010), Albornoz Vásquez et al. (2013), Zafar et al. (2014)

DLA abundance evolution

mean [C/O] vs z mean [O/Fe] vs z

SNII/AGB \rightarrow left; SNIa \rightarrow right (more line broadening at z < 5?)

No PopIII needed to explain current low-z DLA data

Statistical properties of the first GRB hosts

GRB Data: Tanvir et al. (2012); Thöne et al. (2013); Hartoog et al. (2014); Chornock et al. (2014) Numerical models: Campisi et al. (2011); Salvaterra et al. (2013, 2015); Ma et al. (2015, 2017)

GRB abundance ratios: stellar populations at high z

Indirect signatures: abundance ratios

GRB 050904 (z = 6.3): no PopIII [C/O] = -0.1, [S/O] = 1.3[Si/O] = -0.3, $Z \simeq 0.03 Z_{\odot}$ (Kawai et al., 2006; Thone et al., 2013) GRB 130606A (z = 5.9): unlikely PopIII [S/O] < 1.24, [Si/O] < 0.55[Fe/O] < -0.34, $Z \simeq 0.1 Z_{\odot} - 0.01 Z_{\odot}$ (Castro-Tirado et al., 2013) GRB 111008A (z = 5.0): unlikely PopIII $[S/H] = -1.7, Z \gtrsim 0.01 Z_{\odot}$ (Sparre et al., 2014) GRB 100219A (z = 4.7): unlikely PopIII [C/H] = -2.0, [Fe/H] = -1.9[O/H] = -0.9, [S/H] = -1.1 $Z \simeq 0.1 Z_{\odot}$ (Thone et al., 2013)

Ma, Maio, et al. (2015,2017)

MBHs: DCBHs as seeds of SMBHs at $z \gtrsim 6$?

Look for haloes which host gas direct collapse (no fragmentation!): \rightarrow pristine non-SF haloes with T $\sim 10^4$ K, dark mass $\gtrsim 2 \times 10^6 M_{\odot}$, no H₂ content (destroyed by nearby LW radiation)

Maio+2016, 2019

PopIII & alternative cosmological models

Summary

Gas physics and high-z structure formation can be studied effectively by means of cosmological time-dependent 'non-equilibrium' hydrochemistry simulations

Conclusions

- Theoretical results suggest a limited contribution of primordial popIII stars to cosmic SF and a fast transition to popII regime
- Molecular-gas depletion times are 'short' already in the first half Gyr: this is crucial to explain e.g. the large reservoir of H2 gas detected in high-z galaxies and early popIII metal enrichment
- Observed abundance ratios (DLAs, GRBs) are helpful to constrain stellar models (popIII/popII IMF, yields)
- PopIII stars can help disentangle different cosmological models