

OSSERVATORIO ASTROFISICO DI ARCETRI

Contactless active mirrors

for next generation space telescopes

Runa Briguglio

on behalf of the SPLATT team Marco Xompero, Ciro Del Vecchio, Marco Riva, Marcello Scalera, Carmelo Arcidiacono, Riccardo Muradore, Alessandro Terreri, Fernando Pedichini

Context: next generation space telescope

Next generation of space telescopes will investigate cosmic structures, galaxies formation, exo-atmospheres,...

Science requirements include:

- High contrast
- high angular resolution
- exceptional optical quality and stability

Context: next generation space telescope

Next generation of sp cosmic structures, ga

Science requirement

- High contrast
- high angular r
- exceptional or

Active Optics:

crucial technology to meet REQ and reduce mission cost.

BTW these values are beyond our current capacity [

Requirements for ExoEarth Imaging ~10 m diam. ~10 nm surf err ~10 pm stability ~10⁻¹⁰ contrast

Open question:

How can ground base AO contribute to LUVOIR?

E-ELT adaptive M4

6 segments 2.5m diam. 5300+ actuators 10nm Surf Quality incl. phasing

The LATT Project

A 2010 project on Space Active Optics: Testing the **conversion** of the **Adaptive Secondary** into an **Active Space Primary**

Proven with a demonstrator: **17Kg/m², 55mW/act, 19 acts. 1 mm stroke, TRL 5** Laboratory tested. Project ended in 2015.

Prototype recovered in Arcetri under a loan agreement with ESA in 2021.

LATT - working principle

- Reference Body, Aluminum honeycomb
- Voice coil actuators
- Capacitive position sensors
- Thin Zerodur glass shell as optical surface
- magnets on the shell back

The ThinShell "floats" at 100-800um from RefBody

Contactless active mirror?

Voice-coil motors + capacitive sensors provide a contactless actuation mechanism (100-800 um gap from RefBody to optical surface)

A breakthrough in space optics?

- shape error of support have no impact on optical quality
- low freq. deformations are corrected with 0% fitting error
- optical surface is insulated from vibrations from payload

Contactless active mirror?

Voice-coil motors + capacitive sensors provide a contactless actuation mechanism (100-800 um gap from RefBody to optical surface)

A breakthrough in space optics?

- shape error of support have no impact on optical quality
- low freq. deformations are corrected with 0% fitting error
- optical surface is insulated from vibrations from payload
- mechanical decoupling → Requirements "separation":
 - ultra light-weight structures, simplified components, reduction of mass and cost

Contactless active mirror?

Voice-coil motors + capacitive sensors provide a contactless actuation med (100-800 um gap from RefBody to c

A breakthrough

- shape error of support have no
- low freq. deformations are corr
- optical surface is insulated from
- mechanical decoupling \rightarrow
 - ultra light-weight strureduction of mass and

The SPLATT experiment

Goal:

demonstrate that the "floating" optical surface is insensitive to vibrations

Funded by PRIN INAF 2019 - funded in 2021 137 k€, to recover the prototype and set-up the test tower

Vibrations injection

Piezo actuator on elevation arm, ______to inject controlled vibration on the support.

Vibration signal from waveform generator.

Freq range:1 Hz to 120 Hz

seismic accelerom. on the stand and RefBody

Vibration test procedure

We measure the TipTilt with a fast interferometer, when an external disturbance is applied

1. tilt TT_{L} when the ThinShell is pressed against the RefBody by the actuators

Vibration test procedure

We measure the TipTilt with a fast interferometer, when an external disturbance is applied

- 1. tilt TT_{L} when the ThinShell is pressed against the RefBody by the actuators
- 2. tilt TT_F when the ThinShell "floats" at the working gap (100 um, e.g.)

2. ThinShell floating. Tot force =0

Results of the SPLATT experiment

Tests to be repeated in vacuum chamber, next month...

Resonances @40, 60, 100 Hz but

Vibration rejection > 70% @70-90 Hz

Shell-RefBody coupling mediated by air??

Contactless, floating active mirrors:

could be breakthrough for next generation space telescopes

Physical **decoupling** between mech. support and optical surface:

- → improvement of scientific performances lower vibration foot-print lower thermal foot-print
- → reduction of system-wide requirements ultra light-weight structures, lower manufact. specs,
 - simpler REQ., mass&cost reduction

Contactless, floating active mirrors:

could be breakthrough for next generation space telescopes

Physical decoupling between mech. support and optical surface:

→ improvement of scientific performances lower vibration foot-print

lower thermal foot-print

\rightarrow reduction of system-wide requirements

ultra light-weight structures, lower manufact. specs, simpler REQ. mass&cost reduction

Project funded by INAF-PRIN Tecno

137k€ for setting up the **facility** and demonstrate the concept

Grant from INAF was "necessary" aid as startup:

• out of scope for ESA/ASI (TRL and uncertainties)

The team just participated in the ASI "TopicalTeams"

Contactless, floating active mirrors:

could be breakthrough for next generation space telescopes

Physical **decoupling** between mech. support and optical surface:

 \rightarrow improvement of scientific performances

lower vibration foot-print lower thermal foot-print

\rightarrow reduction of system-wide requirements

ultra light-weight structures, lower manufact. specs, simpler REQ. mass&cost reduction

Project funded by INAF-PRIN Tecno

137k€ for setting up the facility and demonstrate the co

Grant from INAF was "necessary" aid as startup:

out of scope for ESA/ASI (TRL and uncertaintie

The team just participated in the ASI "TopicalTeams"

Results presented at: SPIE2022 ICSO2023

to be presented at ESA-ESTEC nov23

Strong synergy within INAF / ADONI:

- Wavefront sensing
- Control strategy
- Scientific sampling for high contrast

Contactless, floating active mirrors:

could be breakthrough for next generation space telescopes

 Physical decoupling bet
 Active optics for space:

 → improvement of scientific lower vibration foot-p lower thermal foot-p
 Active optics for space:

 → reduction of system-wide ultra light-weight strumass&cost reduction
 INAF can be a game changer.

 What's our next move?

backup

Laboratory test campaign

Temperature range: -25°C□55°C

Electrostatic locking test

locking pressure: 600 N/m2

Thermo-vacuum test

Tested @ 1e-5mbar

Vibration test

Max acceler.: 10g

WFE comparable with AO DM

Close loop result: sub-nm stability (and sensitivity)

-

Comments in view of LUVOIR:

- value is consistent with LUVOIR REQ
- No GS V<5 needed
 - (no laser GS constellation)
- time scale: << 1 min (relaxed stability REQ system-wide)
 - fast sampling \rightarrow post-facto correction

Frequency response, single frequency test

SPLATT Attenuation

 $T(freq) = T_F / T_L$

 T_{F} : Tilt ampl. shell floating T_{L} : Tilt ampl. shell lifted to RB

Frequency response, sweep test

Sweep measurement:

Excit.Freq variable in time 15 s to capture F range 1-120 Hz

Same processing

Results of the SPLATT experiment

Vibration rejection vs Actuator PID parameters, vs gap, Air vs Helium...

Frequency response, Air vs Helium

Measurement of auto-induced current

