

# **High Energy Polarimetry**

Paolo Soffitta IXPE Italian PI (INAF-IAPS)

Giornate INAF Osservatorio Astronomico di Capodimente Napoli 2-5 Maggio 2023



Polarization from celestial sources may derive from:

#### • Emission processes themselves: cyclotron, synchrotron, non-thermal bremsstrahlung

(Westfold, 1959; Gnedin & Sunyaev, 1974; Rees, 1975)

# • Scattering on aspherical accreting plasmas: disks, blobs, columns.

(1975; Sunyaev & Titarchuk, 1985; Mészáros, P. et al. 1988)

# • Vacuum polarization and birefringence through extreme magnetic fields

(Gnedin et al., 1978; Ventura, 1979; Mészáros & Ventura, 1979)



# Just one example: solving ambiguity in geometry of compact objects



Viironen & Poutanen 2004



Fig. 1. Geometry of the problem.

# Polarimetry resolves the degeneracy of lightcurves with respect to the geometry of accreting neutron stars



# What happens in a highly magnetized plasma



The radiation emerging from a highly magnetized atmosphere very likely is mostly in extraordinary mode because the scattering cross-section is smaller.



# The first criticality: In high energy polarimetry the sensitivity is a matter of photons

$$MDP = \frac{4.29}{\mu R_s} \sqrt{\frac{R_s + R_b}{T}}$$

#### Minimum Detectable Polarization (MDP)

 $R_s$  is the Source rate,  $R_B$  is the Background rate, T is the observing time  $\mu$  is the modulation factor: the response of the polarimeter to a 100% polarized beam (spanning from 0 or no sensitivity, to 1 or maximum sensitivity)

If background is negligible: 
$$MDP = \frac{4.29}{\mu\sqrt{N_{ph}}}$$
  
To reach MDP=1% with  $\mu$ =0.5:  $N_{ph} = \left(\frac{4.29}{\mu MDP}\right)^2$  = 736 10<sup>3</sup> ph

Source detection > 10 counts Source spectral slope > 100 counts Source polarization > 100.000 counts

Caution: the MDP describes the capability of rejecting the null hypothesis (no polarization) at 99% confidence. For a 3-sigma meaurement an observing time 2.2 times longer is needed while the 1-sigma error scales like : 28°.5/S/N



## Photoelectric effect for X-rays polarimetry

| Mission         | Date               | PI                    |
|-----------------|--------------------|-----------------------|
| XMM             | Late 80'           | G.W. Fraser (UK)      |
| SXRP /SRG       | Late 80' Early 00' | R.Novick (USA)        |
| XEUS/IXO        | 2007-2012          | R. Bellazzini (IT)    |
| POLARIX         | 2007-2008          | E. Costa (IT)         |
| IXPE (OLD)      | 2007               | M. Weisskopf (USA)    |
| HXMT            | 2007-2009          | E. Costa (IT)         |
| NHXM            | 2011               | G. Tagliaferri (IT)   |
| LAMP            | 2013               | H. Feng (China)       |
| XIPE (Small)    | 2014               | E. Costa (IT)         |
| ADAELI+         | 2014               | F. Berrilli (IT)      |
| SEEPE (ESA-CAS) | 2014               | S.Liu-P. Soffitta     |
| XIPE M4         | 2014-2017          | P. Soffitta (IT)      |
| IXPE            | 2017+              | M. Weisskopf<br>(USA) |

At the 13<sup>th</sup> proposal IXPE was selected for flight! Selecten in Jan. 2017. Launched on 9<sup>th</sup> December 2021.









## THE IXPE OBSERVATORY





## CALIBRATION OF 3 FLIGHT DUS + 1 SPARE, AIV&T

- Calibration of DU have been carried out in Italy at INAF-IAPS, before Instrument integration and delivery to USA
- 40 days for each DU (3 flight + 1 spare units)
  - Up to 24/7 data acquisition
- First unit started calibration on 26th July, DU-FM2 started on 6th Sep 2019, DU3 on 23 Oct. 2019, DU 4 on 16 Dec. 2019
- 60% of time dedicated to characterization of the response to unpolarized radiation at 6 energies
- 17.5% of time dedicated to measurements of modulation factor at 7 energies
- Remaining time to calibrate other parameters of interest
- Energy calibration and dead-time are by-product of previous measurements





Muleri et al., 2022

Lesson learned: Larger number of energies at low and at high energy ends. Smaller duration (less ASIC dead-time) of calibration: no always available such time.



## FILTER CALIBRATION WHEEL ASSEMBLY



Filter and Calibration Wheel (FCW), providing open, attenuator, and closed positions, plus four <sup>55</sup>Fe-powered calibration sources:

- Cal A Bragg-reflected polarized 2.98-keV (Ag-L $\alpha$  fluorescence) and 5.89-keV (Mn-K $\alpha$ )
- Cal B unpolarized 5.89-keV spot
- Cal C unpolarized 5.89-keV flood
- Cal D unpolarized 1.74-keV (Si-K $\alpha$  fluorescence) flood

# Calibration is performed once per orbit during occultation of celestial sources by the Earth



#### Science Advisory Team (chaired by Giorgio Matt and Roger Romani) Coordinates science activities required for planning, analyzing, interpreting, and reporting IXPE observations

Organized into seven Topical Working Groups

#### – TWG1 Pulsar Wind Nebulae, led by Niccolò Bucciantini (INAF-Arcetri)

Obtain polarimetric imaging to constrain the magnetic-field geometry of the nebula and the phase-dependent polarization of the pulsar

#### - TWG2 Supernova Remnants, led by Pat Slane (CfA)

Obtain spectral polarimetric imaging of Supernova Remnants (SNR) to constrain the magnetic-field structure of the X-ray emitting regions

#### - TWG3 Accreting Black Holes, led by Michal Dovčiak (CAS-ASU)

Obtain spectral polarimetry of microquasars to constrain the value of the black-hole spin parameter (if in soft state), or constrain the geometry of the corona (if in hard state)

#### - TWG4 Accreting Neutron Stars, led by Juri Poutanen (Turku)

Obtain phase-dependent polarimetry of accreting X-ray pulsars (high-magnetic-field binaries) to constrain models and geometries for the pulsing emission. Obtain polarimetry of non pulsating accreting NS to constrain the geometry of the system

#### - TWG5 Magnetars, led by Roberto Turolla (Uni Padua)

Obtain phase-dependent polarimetry of magnetars to constrain the effects of vacuum polarization (birefringence in a strong magnetic field)

#### - TWG6 Radio-Quiet AGN & Sgr A, led by Frédéric Marin (Strasbourg)

Obtain polarimetry of RQ AGN to constrain the geometry of the emitting regions

#### – TWG7 Blazars & Radio Galaxies, led by Alan Marscher (Boston U)

Obtain polarimetry of Blazars and RG to study jet emission



#### STATUS OF TECHNICAL PAPERS (REF. JOURNALS)

| Author                         | Journal       | Торіс                         | Status    | Year |
|--------------------------------|---------------|-------------------------------|-----------|------|
| Weisskopf,<br>Soffitta et al., | JATIS         | IXPE Mission                  | Published | 2022 |
| Soffitta et al.,               | AJ            | IXPE Instrument               | Published | 2021 |
| Baldini et al.                 | Astrop. Phys. | IXPE GPD                      | Published | 2021 |
| Di Marco et al.                | AJ            | Weghted Analysis              | Published | 2022 |
| Di Marco et al.                | AJ            | Calibration Pol. Rad.         | Published | 2022 |
| Di Marco et al.                | AJ            | IXPE Background               | Published | 2023 |
| Rankin et al.                  | AJ            | Spurious Modul. Correction    | Published | 2022 |
| Rankin et al.                  | AJ            | Gain Equalization             | Published | 2023 |
| Muleri et al.                  | Astrop. Phys. | Instrument Calibration Equip. | Published | 2022 |
| Ferrazzoli et al.              | JATIS         | On-board Calibration Sources  | Published | 2020 |
| Peirson, Romani                | ApJ           | Neural Network                | Published | 2021 |
| Peirson et al.                 | NIM A         | Neural Network                | Published | 2021 |



## Status of the Astrophysical papers 1/2

| Sorgente        | Тіро                                | Primo autore         | Rivista          | Stato      |
|-----------------|-------------------------------------|----------------------|------------------|------------|
| 4U 0142+61      | Magnetar                            | Roberto Taverna      | Science          | Published  |
| Mrk 501         | Blazar (HBL)                        | Yannis Liodakis      | Nature           | Published  |
| Cen A           | Radio Galaxy                        | Stephen Ehlert       | АрЈ              | Published  |
| Cas A           | Supernova Remnant                   | Jacco Vink           | АрЈ              | Published  |
| Her X-1         | Accreting neutron star              | Viktor Doroshenko    | Nature Astronomy | Published  |
| Vela PWN        | Pulsar Wind Nebula                  | Fei Xie              | Nature           | Published  |
| Cyg X-1         | Black Hole Binary                   | Henric Krawczinsky   | Science          | Published  |
| 4U 1626-67      | Accreting neutron star              | Herman Marshall      | АрЈ              | Published  |
| Crab PWN        | Pulsar Wind Nebula                  | Niccolo' Bucciantini | Nature Astonomy  | Pubblicato |
| MCG-5-23-16     | Radio Quiet AGN                     | Andrea Marinucci     | MNRAS            | Pubblicato |
| Mrk 421         | Blazar (HBL)                        | Laura DI Gesu        | ApJ Letter       | Pubblicato |
| GS 1826-238     | Weakly Magnetized Neutron Star      | Fiamma Capitanio     | АрЈ              | Sottomesso |
| Cen X-3         | Accreting neutron star              | Sergey Tsiganov      | ApJ letter       | Published  |
| Cyg X-2         | Accreting neutron star              | Ruben Farinelli      | MNRAS            | Pubblicato |
| Circinus Galaxy | Radio Quiet AGN (Seyfert 2)         | Francesco Ursini     | MNRAS            | Pubblicato |
| BL Lac          | Blazar                              | Riccardo Middei      | ApJL             | Accettato  |
| Sgr A* Complex  | Molecular Clouds in the Gal. Center | Frèdèric Marin       | Nature           | Accepted   |



## Status of the Astrophyscial paper 2/2

| Sorgente          | Тіро                           | Primo autore        | Rivista          | Stato      |
|-------------------|--------------------------------|---------------------|------------------|------------|
| Tycho             | Supernova Remnant              | Riccardo Ferrazzoli | Nature Astronomy | Pubblicato |
| Vela X-1          | Accreting neutron star         | Juri Poutanen       | ApJL             | Published  |
| GRB 221009A       | Gamma Ray Burst (Prompt & Aft) | Michela Negro       | ApJL             | pubblicato |
| 1 RXS J1708       | Magnetar                       | Silvia Zane         | ApJL             | Published  |
| Mrk 421 (B)       | Blazar (HBL)                   | Laura di Gesu       | Nature Astronomy | submitted  |
| BL Lac blazar (B) | Blazar (LBL)                   | Lawrence Pearscon   | ApJ              | submitted  |
| XTE J1701-462     | Accreting Neutron Star         | Massimo Cocchi      | A&A Letters      | submitted  |
| GRO J1008-57      | Accreting Neutron Star         | Sergey Tsygankov    | A&A              | Submitted  |
| NGC 4151          | Radio Quiet AGN                | Elvezia Gianolli    | MNRAS            | Submitted  |
| LMC X-1           | Black-Hole Binary              | Jakub Podgorny      | MNRAS            | Submitted  |
| X-Persei          | Accreting Neutron Star         | Alexander Mushtukov | MNRAS            | Submitted  |
| GX 9-9            | Accreting Neutron Star         | Francesco Ursini    | A&A              | Submitted  |
| 4U 1630-472       | Black Hole Binary              | Ajay Ratheesh       | Nature Astronomy | Submitted  |
| EXO 2030+275      | Accreting Neutron Star         | Christian Malacaria | A&A              | Submitted  |

About at least 31 astrophysical papers submitted by the collaborations. 18 papers have an Italian first author



#### FROM QUICK-LOOK ANALYSIS

#### 19 DETECTIONS AT MORE THAN 6-SIGMA ON 46 SOURCES

| Source       | Туре                         |
|--------------|------------------------------|
| Crab         | PWN                          |
| Vela PWN     | PWN                          |
| MSH 15-52    | PWN                          |
| Cyg X-1      | Accreting stellar black-hole |
| 4U-1630-47   | Accreting stellar black-hole |
| Cyg X-3      | Accreting stellar black-hole |
| Her X-1      | Accreting Neutron Star       |
| Cen X-3      | Accreting Neutron Star       |
| XTE 1701-46  | Accreting Neutron Star       |
| GRO J1008-57 | Accreting Neutron Star       |
| 4U 0142+61   | Magnetar                     |
| 1RXS j170849 | Magnetar                     |
| Mrk 501      | Blazar                       |
| Mrk 421      | Blazar                       |
| 1ES1959+650  | Blazar                       |
| Cyg X-3      | Accreting Stellar Black-Hole |
| GRO J1008-57 | Accreting Neutron Star       |
| LSV 44-17    | Accreting Neutron Star       |
| GX 5-1       | Accreting Neutron Star       |



## Some results from IXPE changed the game



Giornate INAF Napoli, 2-5 Maggio 2023 corona for both Cyg X-1 and NGC 4151



# Improving and expanding the capabilities of Xray Polarimetry beyond IXPE

#### Larger Effective area & Point Spread Function Energy [keV] 11: The net effective area of all XMM-New EPIC and RGS (lin EPIC: PN 10 Larger mirror effective area EPIC: MOS (2 modules) Effective area 1000 EPIC: MOS (single) Modulation response function RGS-total: -1st order Mirror + Derector RGS-total: -2nd order RGS1: -1<sup>st</sup> or Effective Area, Ae [cm2] 101 Larger detector Q.E.-> Response [cm<sup>2</sup>] electro-negative mixtures 100 Better than 30' HEW 10 10 10 12 Ġ Energy [keV] Energy [keV] Tycho SNR 16 2' = 2.23 kpc 64°15' Two magnetars showed 14 Cen A different behavior with 1 12 10' 10 (%) Ms net observing time DEC Core (20 days each). Needed a 05 large area to improve the 201 433 201.349 201 302 201 391 sensitivity.

36 % MDP on the jet (100 ks)

2.1 2.5 3.3 4.8 7.9

Ehlert et al., 2022

14

Ferrazzoli et al., 2023 0h26m30s

Few pixels showed significant polarimetry

24<sup>m</sup>30<sup>s</sup>



## Improving and expanding the capabilities of X-ray Polarimetry beyond IXPE







Kaminski 2017



An energy resolution down to 10 % can be reached with GridPIX technologies at 6 keV



#### IMPROVING AND EXPANDING THE CAPABILITIES OF X-RAY POLARIMETRY BEYOND IXPE

# $MDP_{99} = 5.5 \% {}^{2} \sqrt{\frac{1}{\frac{T}{10 \text{ days}} * \frac{F}{0.5 \text{ mCrab}}}} (2-8 \text{ keV}) \qquad \text{Requirement}$

- The mirror effective area after construction is about 20 % smaller than expected.
- The detector is about 20 % less efficient than expected (but larger modulation factor)



Neural Networks seems promising techniques. They need to be validated with real calibration data because Monte Carlo training can hide a non uniform response to unpolarized radiation. Measuring flat response to unpolarized radiation is very difficult.



#### IMPROVING AND EXPANDING THE CAPABILITIES OF X-RAY POLARIMETRY BEYOND IXPE



Rotating each photon with respect to the center and selecting the energy range between the calcium line and the Iron line we demonstrated that, as in radio, the polarization angle is perpendicular to the radius of the SNR as in radio band (*Vink et al. 2022*)





#### IMPROVING AND EXPANDING THE CAPABILITIES OF X-RAY POLARIMETRY BEYOND IXPE



#### IXPE energy band Future Hard X-ray imaging polarimetry

Polarimetry above 6 keV to study reflection phenomena suffers of both a small detector quantum efficiency/mirror effective area. Reflection phenomena are poorely constrained

Improving and expanding the capabilities of X-ray Polarimetry beyond IXPE





Wide energy band and no imaging for Low Magnetized Neutron Stars

Comptonization extends up to 20-30 keV. It might be interesting to explore polarimetry in this energy band. It might help to constrain the geometry of the reflecting elements



# IMPROVING AND EXPANDING THE CAPABILITIES OF X-RAY POLARIMETRY BEYOND IXPE



Most of the cyclotron fundamental lines can be probed by photoelectric imaging Polarimeters (Pressurized Argon, Medium Energy). The higher energy end requires Active Compton scattering polarimeter





## Beside a larger effective area and better HEW mirror



#### **TECHNICAL IMPROVEMENTS IN THE IXPE BANDS**

How IXPE could be made better

- Thermal deformation of the boom -> metrological system
- Larger accessible sky (Multivavelength and ToO's) -> more solar panels
- Constant gas pressure -> better studies of detector materials.
- Ground segment better staffed (more ToO's)

... and in the future

- Less charge build-up -> multiplication stage different from Gas Eelectron Multiplier
- Less spurious modulation -> New ASIC generation
- Less dead-time -> New ASIC generation
- Avoid dithering (If possible).
- Tagged calibration source (If possible).



New Generation of 3D photoelectric detectors for high throughput optics (very low dead-time) 2-8 keV Classical energy band polarimetry (Imaging, DME based) 6-30 keV Hard-X polarimetry (Imaging, Argon based)

New Generation of photoelectric large area detector for a collimated small experiment (much less costly than IXPE)

2-8 keV Classical energy band polarimetry (DME based)6-30 keV Hard X-ray polarimetry (Argon based)

# **By-side science**

Wide field GRB polarimetry:

Based on active scattering 20-200 keV (SWEPE, Muleri F.) Based on photoelectric effect (2-8 keV or 6-30 keV)

Solar flare polarimetry

Based on active scattering (20-200 keV) (CUSP, Fabiani S.) Based on photoelectric effect (10-30 keV)



## **CONCLUSIVE REMARKS**

X-ray polarimetry deserves a much larger mission

Future X-ray telescopes should include an X-ray polarimeter

Meanwhile we are working to improve the instrument and the analysis tools



# END