Multiprobe Cosmology in the Euclid Era

Carmelita Carbone INAF – IASF Milan

Giornate INAF, 3rd May 2023, Napoli

Contributors:

Carlo Baccigalupi (SISSA), Stefano Camera (UniTO), Vincenzo Cardone (INAF-OAR), Fabio Finelli (INAF-OAS), Luigi Guzzo (UniMI), Alessandro Gruppuso (INAF-OAS), Matteo Martinelli (INAF-OAR), Marina Migliaccio (UniToV), Michele Moresco (UniBO), Lauro Moscardini (UniBO), Daniela Paoletti (INAF-OAS), Alvise Raccanelli (UniPD), Angelo Ricciardone (UniPI) &... all my hard worker Euclid-colleagues!

The Euclid Mission

- Medium-class ESA mission
- 1.2m mirror telescope
- Optical imager (R+I+Z) (VIS)
- NIR-photometer (Y, J, H) (NISP-P)
- NIR-spectrograph slitless (NISP-S)
- Launch 1-7 July 2023, Orbit L2
- Mission duration 6 years
- Cosmology
 - Galaxy Clustering
 - Cosmic shear
 - Galaxy Clusters
 - Cosmic Voids
 - CMBX
 - Strong Lensing
- Legacy Science

Unveiling dark energy and gravity with the Euclid probe combination approach to the dark sector

Weak lensing

UNIONS [CFIS / JEDIS-g / Pan-STARRS / WISHES], ugriz, 2017-27 : 4800 deg2

Credits: J.-C. Cuillandre and the ECSURV team

Probe combination is key to high precision and accuracy

REFERENCE PAPER: Euclid Consortium, Blanchard etal 2020 (arXiv:1910.09273)

All probe combination $GC_s+WL+GC_{ph}+XC^{(OC_{ph},WL)}$												
Setting	$\Omega_{\mathrm{m,0}}$	$\Omega_{b,0}$	$\Omega_{\text{DE},0}$	w_0	w _a	h	$n_{\rm s}$	σ_8				
ACDM flat												
Pessimistic	0.0067	0.025	_	_	_	0.0036	0.0049	0.0031				
Optimistic	0.0025	0.011	_	_	_	0.0011	0.0015	0.0012				
w_0, w_a flat												
Pessimistic	0.0110	0.035	_	0.036	0.15	0.0053	0.0053	0.0049				
Optimistic	0.0060	0.015	_	0.025	0.091	0.0015	0.0019	0.0022				

Big questions in cosmology

- $H_0 \& S_8$ tensions
- Origin of the late accelerated expansion (dark energy, MG...)
- Neutrino mass
- Universe initial conditions (primordial non-Gaussianity...)
- Dark matter
- Etc...

Will Euclid give an answer?

Probably not alone... cross-correlation with external probes is needed!

H₀ tension: current status

Madhavacheril etal 2023

GW×Euclid: forecasts

SGWB×SDSS: observations

Cross-correlation of the anisotropic SGWB measurements using data from aLIGO (O3) and SDSS

GW×LSS: forecasts chasing the progenitors of merging binary black holes

aLIGO×EMU

ET×SKA

Maximising the scientific return of GW as standard sirens

N. Borghi (UniBo, PhD), M. Moresco (UniBo), A. Cimatti (UniBo), M. Mancarella (UniMiB), F. Iacovelli (UniMiB, UniGe), M. Maggiore (UniGe)

Aim: expand current GW codes to perform a **joint analysis** of cosmological (H₀) & astrophysical (BBH rate and mass distribution) parameters

Applications:

- (i) forecast on H₀ and population parameters for LVK O4, LVKI O5 (+ code release, Borghi, Moresco et al., in prep 2023a)
- (ii) forecasts on GW as dark sirens from ET x Euclid(Borghi, Moresco et al., in prep 2023b)

Other improvements w.r.t. previous codes:

- Pixelated approach (see Gray et al. 2023)
- KDE approximation of GW data

Current activities:

- generated mock catalog of potential host galaxies (MICEv2; Fosalba et al. 2015) and associated GW events (simulated with GWFast; lacovelli et al. 2022)
- Code verification and validation

Contribution:

activity lead by Unibo (and Bologna, BoET Research unit in Einstein Telescope collaboration) + UniMiB and UniGe

simulated GW events

catalog

Combining the Euclid spectroscopic sample with the Dark Siren catalogue of the Einstein Telescope

R. Ciancarella (PhD Roma3), E. Branchini (UniGE), C. Carbone (IASF-MI), M. Bonici (IASF-MI)

Euclid Galaxy Survey: synthetic Euclid spectroscopic catalogue form the Flagship simulation. A total of 20M galaxies over 15000 deg² in the redshift range z= [0.9; 1.8]

Einstein Telescope: synthetic DS catalogue observed by a detector matching the specification of the Einstein Telescope.

We follow the approach of Finke et al 2021, extended to the high redshift covered by Euclid and ET.

Test made on a uniform catalogue of hosts and a set of sirens whose distances are measured with a few % precision and angular position determined to within 10 squared degrees.

S₈ tension: current status

ACT

CMB: Planck CMB aniso. CMB: Planck CMB aniso. (+A_{lens} marg.) CMB: WMAP+ACT CMB aniso. CMBL: Planck CMB lensing + BAO CMBL: SPT CMB lensing + BAO CMBL: ACT CMB lensing + BAO CMBL: ACT +Planck CMB lensing + BAO WL: DES-Y3 galaxy lensing+clustering WL: KiDS-1000 galaxy lensing+clustering HSC-Y3 galaxy lensing HSC-Y3 galaxy lensing (Real) + BAO GC: eBOSS BAO+RSD CX: SPT/Planck CMB lensing x DES CX: Planck CMB lensing x unWISE

Hyper Suprime-Cam Year 3

2.5-σ tension with Planck!

Sugiyama etal 2023

Madhavacheril etal 2023

Euclid X CMB-lensing to constrain DE and MG

REFERENCE PAPER: Euclid Consortium, Ilic etal 2021 (arXiv:2106.08346) Complementary to forecasts from primary probes (GC_{sp}+3x2pt)

Euclid X CMB-lensing to constrain the neutrino mass

Euclid X CMB-lensing: lensing ratios

 $r_{\ell} \equiv \frac{C_{\ell}^{\kappa_{\rm CMB}G}}{C_{\ell}^{\kappa_{\rm gal}G}}$

Lensing ratios - shear ratios between the galaxy - CMB lensing and galaxy galaxy lensing cross-correlations are useful as "cosmographic" distance estimators (Das & Spergel 2009), mostly independent on bias.

Euclid in combination with CMB lensing is an ideal experiment for the lensing ratio: it will provide measurements of galaxy lenses (spectroscopic survey) and sources (photometric survey)

~5% measurement with Planck lensing, ~2% with SO (Bermejo-Climent etal (2020) Current measurement is ~17% with DES+SPT

J. R. Bermejo-Climent et al. Phys. Rev. D (2020)

etimators

Euclid X CMB-ISW: constraining DE and primordial non-Gaussianity

(Gruppuso, Migliaccio, Cuozzo...)

Comparison between PCL and QML on CMB and **Euclid photometric survey simulations**

Euclid X CMB-ISW: constraining DE and primordial non-Gaussianity

(Gruppuso, Migliaccio, Cuozzo...)

$$\boldsymbol{\Omega}_{\Lambda} \longrightarrow \chi^{2}(\Omega_{\Lambda}) = \left[\hat{C}^{TG} - C^{TG}(\Omega_{\Lambda})\right]^{T} Cov^{-1} \left[\hat{C}^{TG} - C^{TG}(\Omega_{\Lambda})\right]$$

- → Assuming Fiducial Gaussian Likelihood with the PCL analytic covariance matrix
- \hat{C}^{TG} : PCL estimates for 1000 simulations using the new survey RSD_2022G mask • $C^{TG}(\Omega_{\Lambda})$: grid of model C^{TG}

Galaxy-clusters X CMB: alternative ISW detection

Compared to CMB, SNe, Galaxy Clustering & Lensing, both **degeneracies and systematics** are different: **complementarity**

Two Euclid cluster probes: abundances & clustering

• with Euclid or eRosita you can detect ISW not only by cross-correlation with galaxies, but also with clusters of galaxies!

2 < S/N < 3 with current single galaxy survey.

 We find S/N ~ 4 for the expected Euclid cluster catalogue (Sartoris et al. 2016):

	eR_cl	Eu_cl_opt	Eu_cl_con	Eu_gal_sp	Eu_gal_ph
т	2.5	3.5	3.3	2.2	3.7
$^{\mathrm{T,E}}$	3.0	4.1	3.9	2.5	4.3

Vikhlinin et al. 2009

Ballardini, Paoletti, Finelli, Moscardini, Sartoris, MNRAS 482 (2019)

Euclid X ISW+CMB-lensing: constraining DE & neutrino mass

See also: J. R. Bermejo-Climent Ph.D. thesis (2021), supported by INAF-Spain fellowship.

Euclid X SKA: DE and primordial non-Gaussianity

- SKA 21cm surveys would provide an independent redshift sample over large part of the wide Euclid survey, to further control systematic effects
- Combination of Euclid- and SKA-selected samples OVER THE SAME VOLUME will add extra power to clustering analysis: use of multiple tracers reduces statistical errors (Mc Donald & Seljak 2009)

All contours but those for the cross-correlation are biased (i.e. they are not centred on the black cross) due to the presence of residual, additive experimental systematics. Multi-tracer technique applied to SKA1 X Euclid-photo dramatically reduce the statistical errors

Improving non-linear modelling...

...implies investing in computational resources AND develop alternative strategies via ML/DL

- Machine Learning for Observational Cosmology (arXiv:2303.15794)
- Jax-cosmo: an end-to-end differentiable and gpu accelerated cosmology library (arXiv:2302.05163)
- Cosmology with Galaxy Cluster Properties using Machine Learning (arXiv:2304.09142)
- Improving cosmological covariance matrices with machine learning (arXiv:2205.10881)
- Dedicated KP in Euclid GC-SWG WP:Likelihood (Bonici etal in prep)
- ...

Suggested future strategies

- Combine and cross-correlate sight (photons) and hearing (gravitons) as you do in your day life: maybe a possible solution to the H₀-tension.
- Improve nonlinear modelling: maybe a possible mitigation to the S₈ tension (needs big investment in computing resources).
- Data will be too huge for traditional techniques: invest in deep learning techniques (PNRR-CN1 only a starting point)
- Invest in (especially high-z) multi-wavelength and multi-tracers (SKA, Euclid, JWST...) cosmology: possible solution to calibration/systematics.