
Energy efficiency in Data Reduction
for Imaging in a Radio Astronomy
pipeline
Giovanni Lacopo, PhD in Physics

Supervisors: Luca Tornatore, Giuliano Taffoni, Stefano Borgani

Radio-interferometry data processing

● The code (see C. Gheller’s talk for details) is a stage in a Radio Imaging
pipeline;

● Each MPI task has a fraction of a timeline series, that contains the
observed sources in chronological order;
as always, the sources apparently move in the sky due to the Earth
rotation.

Each MPI task has a fraction of
the time-ordered log of the
observations
(kind of it has some of the
tracks in the picture)

What we need is
to translate from
a time-domain
to a sky-domain

What we need is to
translate from a
time-domain to a
sky-domain

1) every MPI task stacks all of its data that lie in a given sector
2) all the tasks perform a reduce operation having as target the task that owns

the sector

Obviously, there are as many sectors as MPI tasks.

⇒ There are as many MPI_Reduce() calls than MPI tasks

The MPI_Reduce is the bottleneck

We find the the
MPI_Reduce operation
takes a very
significant amount of
time, which grows fast
with the number of
MPI tasks

Up to 80-90 % for
big problems
(which are the targets)

Reduce in Shared memory

We keep the reduce in-node under control by implementing a by-hand reduce in
shared memory by exploiting the NUMA awareness of the architectures
(see L.Tornatore’s talk)

● New in-node communicator in which each task knows which are its siblings;
● Ring algorithm in which each task sums 1/P of the data.

Our reduce vs OpenMPI (paper in prep.)

Key message

● Our reduce is 2 to 5 times faster
on a node

● Our reduce requires less energy
○ 2 to 7 times less CPU energy
○ ~3 times less memory energy

Our reduce vs OpenMPI (paper in prep.)

Key message

● The energy advantage is NOT simply
due to the smaller time-to-solution:
there is a specific algorithmic
imprint

● we consume slightly more energy in
DRAM access
(our algorithm is more memory
intense)

Memory accesses
 Key message

Relatively, our reduce is
significantly more
memory-intense

 Fraction of Energy spent in Memory Access

What about the network?

Is necessary to implement a reduce operation also among the nodes or can we
rely on the standard implementations given by MPI?

The bottleneck is still the MPI_reduce among nodes

Reduce operation on GPUs?

Pros:

● Relatively simple to use thanks to NCCL;
● RDMA in-node and inter-node for GPU-GPU communication;
● Portable on AMD GPUs.

Cons:

● Requirement of specific hardware components (Nvlink, Infinity Fabric) to
achieve the best performance.

Credits: https://developer.nvidia.com/nccl

Energy profiler

Python code which recognizes the specific architecture and profiles the power
consumption of the codes and their different parts:

● Intel CPUs 🔛
● AMD CPUs 🔛
● Nvidia GPUs 🔛
● AMD GPUs 🔜
● ARM CPUs Not yet :(

Credits: Niccolò Tosato

Conclusions

● In our Radio Imaging code the reduce operation is the true bottleneck, taking
up to 70-80% of runtime;

● To face this issue, we have written a by-hand reduce operation which is faster
by a factor of ~5-6 and more energy efficient by a factor of ~6-7 inside each
computing node;

● This means that there are cheap and expensive CPU instructions. Writing an
energy efficient code does not simply mean making it faster.

Future perspectives

● Implementation of a by-hand reduce inter-node to handle the bottleneck of
communication;

● Benchmarking to compare our reduce operation with NCCL reduce on GPUs
(already implemented in the code);

● Complete profiling of power consumption of single code functions with our
energy profiler.

MPI_Ireduce

The MPI_Reduce is the bottleneck

We find the the
MPI_Reduce operation
takes a very significant
amount of time, which
grows fast with the
number of MPI tasks

Our reduce vs OpenMPI (paper in prep.)

Key message

● Our reduce is 2 to 5 times
faster on a node

● Our reduce requires less
energy

○ 2 to 7 times less CPU
energy

○ ~3 times less memory
energy

Our reduce vs OpenMPI (paper in prep.)

Key message

● The energy advantage is
NOT simply due to the
smaller time-to-solution

● we consume slightly more
energy in DRAM access
(our algorithm is more
memory intense)

