BOW SHOCK PULSARS WIND NEBULAE: A TAIL OF TRAILS.

NICCOLO' BUCCIANTINI & BARBARA OLMI INAF ARCETRI - UNIV. FIRENZE - INFN

FATED TO ESCAPE

PWN EXPANDS INTO SHOCKED EJECTA "RELIC" RADIO PWN LEFT BEHIND NEW PWN AROUND PULSAR (X-RAY)

SNR G327.1-1.1, Gaensler & Slane 2006

van der Swaluw (2004)

SNR W44 (Frail et al. 1996, Giacani et al. 1997)

BOW SHOCK PWNE

$$t_{esc}V_{psr} = R_{snr} = \left(\frac{E_{sn}}{\rho_{ism}}\right)^{1/3} t_{esc}^{2/5} = t_{esc} \approx \left(\frac{E_{sn}}{\rho_{ism}}\right)^{1/3} \left(\frac{1}{V_{psr}}\right)^{5/3} \approx 2 \times 10^5 \text{yr} \left(\frac{E_{sn}}{10^{51} \text{erg}}\right)^{1/3} \left(\frac{V_{psr}}{200 \text{km s}^{-1}}\right)^{5/3} \left(\frac{n_{ism}}{1 \text{cm}^{-3}}\right)^{-1/3}$$

PSR B1957+20 (Stappers et al. 2003)

PSR B2224+65 (Chatterjee & Cordes 2002)

BOW SHOCK PWNE

$$t_{esc}V_{psr} = R_{snr} = \left(\frac{E_{sn}}{\rho_{ism}}\right)^{1/3} t_{esc}^{2/5} = t_{esc} \approx \left(\frac{E_{sn}}{\rho_{ism}}\right)^{1/3} \left(\frac{1}{V_{psr}}\right)^{5/3} \approx 2 \times 10^5 \text{yr} \left(\frac{E_{sn}}{10^{51} \text{erg}}\right)^{1/3} \left(\frac{V_{psr}}{200 \text{km s}^{-1}}\right)^{5/3} \left(\frac{n_{ism}}{1 \text{ cm}^{-3}}\right)^{-1/3}$$

PSR B1957+20 (Stappers et al. 2003)

PSR B2224+65 (Chatterjee & Cordes 2002)

BOW SHOCK PWNE

PARTICLE ESCAPE

PSR J1101 (Pavan et al 2016)

THE ARE BS PWNE WHERE THE X-RAY "TAIL" IS WHERE IT SHOULD NOT BE!

THE PARTICLES IN THESE FEATURES ARE ~ PSR VOLTAGE

TEV HALO SUGGEST STRONG DIFFUSION

G327 (Temin et al 2009)

Geminga (HAWC Abeysekara et al 2017)

PARTICLE ESCAPE - GC

DIVERSITY

Buccia

GEOMETRY

Bucciantini 2018

THIS IS A FUNDAMENTALLY 3D SYSTEM SPIN VEL INCLINATION BISM SPIN INCLINATION PSR WIND ANISOTROPY PSR WIND MAGNETIZATION

OBSERVER INCLINATION

COMPUTATIONAL REQ.

RELATIVISTIC MHD – CORRECT JUMP AND POST SHOCK DYNAMICS

AMR – NECESSARY TO HANDLE DIFFERENT STRUCTURAL FEATURES OF VARIOUS SCALES

NEED TO SAMPLE A VAST PARAMETER SPACE IN TERMS OF CONFIGURATIONS

NEED TO EVOLVE FOR A LONG TIME IN ORDER TO REMOVE BIASES DUE TO INITIAL CONDITIONS

COMPUTATIONAL REQ.

RELATIVISTIC MHD – CORRECT JUMP AND POST SHOCK DYNAMICS

COMPUTATIONAL REQ.

PLUTO + CHOMBO AMR

CINECA – BRD & KNL – MARCONI

ABOUT 50 DIFFERENT CONFIGURATIONS

TEMPO VIA 2 REQUESTS WITH INAF – CINECA CALSS A

TOTAL TIME 2018 – 2019 ABOUT 10MHR

ABOUT 10GB OF DATA FOR EACH RUN

POST PROCESSING – IN HOUSE CLUSTER

BOW-SHOCK

BOW-SHOCK

BOW-SHOCK

TURBULENCE

ISOTROPIC

ANISOTROPIC

TURBULENCE

ISOTROPIC

ANISOTROPIC

TURBULENCE

ISOTROPIC

ANISOTROPIC

Olmi & Bucciantini 2019

EMISSION

Olmi & Bucciantini 2019b

PARTICLE ESCAPE

PARTICLE AT VOLTAGE HAVE LARMOUR RADIUS \sim DO

$$d_o = \sqrt{\frac{L}{4\pi c \rho_o V^2}} ,,$$

CURRENT SHEETS PRODUCE CONFINEMENT

PARTICLE ESCAPE

PARTICLE AT VOLTAGE HAVE LARMOUR RADIUS \sim DO

$$d_o = \sqrt{\frac{L}{4\pi c \rho_o V^2}} \,, ,$$

CURRENT SHEETS PRODUCE CONFINEMENT

Bucciantini 2018

CONFINEMENT

MAGNETIC FIELD AND CURRENT STRUCTURE IN THE TAIL

ISM MAGNETIC FIELD IS IN THE Y (HORIZONTAL) DIRECTION

CONFINEMENT

Olmi & Bucciantini 2019

MAGNETIC FIELD AND CURRENT STRUCTURE IN THE TAIL

ISM MAGNETIC FIELD IS IN THE Y (HORIZONTAL) DIRECTION

LOW ENERGY PARTICLES REMAIN CONFINED IN CURRENTS

GEMINGA HARD TAILS

LOW ENERGY PARTICLES REMAIN CONFINED IN CURRENTS

GEMINGA HARD Tails

JETS

CONCLUSIONS

3D SIMULATIONS NECESSARY TO COMPARE THE CORRECT DYNAMICS IN THE HEAD AND TAIL.

MAGNETIC TURBULENCE STRONGLY DEPENDENT ON WIND MAGNETISATION AND ENERGY ANISOTROPY

SYNCHROTRON EMISSIVITY SENSITIVE TO MAGNETIC CONFIGURATIONS ONLY FOR HIGH MAGNETISATIONS, AND QUASI-LAMINAR FLOW

HIGH ENERGY PARTICLES ESCAPE STRONGLY AFFECTED BY THE PRESENCE OF CURRENT SHEETS

DYNAMICS AT THE MAGNETOPAUSE CAN LEAD TO STRONG ANISOTROPY IN THE EMERGENT PARTICLE ENERGY FLUX

THANK YOU