BOW SHOCK PULSARS WIND NEBULE A TAIL OF TRAILS.

NICCOLO' BUCCIANTINI \& BARBARA OLMI

INAF ARCETRI - UNIV. FIRENZE - INFN

UNIVERSITÀ DEGLI STUDI FIRENZE

FATED TO ESCAPE

PWN EXPANDS INTO SHOCKED EJECTA "RELC" RADIO PWN LEFT BEEIND NEW PWN AROUND PULSAR (X-RAY)

SNR G327.1-1.1, Gaensler \& Slane 2006

BOW SHOCK PWNE

$$
\begin{array}{r}
t_{e s c} V_{p s r}=R_{s n r}=\left(\frac{E_{s n}}{\rho_{i s m}}\right)^{1 / 5} t_{e s c}^{2 / 5} \\
\Rightarrow t_{e s c} \approx\left(\frac{E_{s n}}{\rho_{i s m}}\right)^{1 / 3}\left(\frac{1}{V_{p s r}}\right)^{5 / 3} \approx 2 \times 10^{5} \mathrm{yr}\left(\frac{E_{s n}}{10^{51} \mathrm{erg}}\right)^{1 / 3}\left(\frac{V_{p s r}}{200 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{5 / 3}\left(\frac{n_{i s m}}{1 \mathrm{~cm}^{-3}}\right)^{-1 / 3}
\end{array}
$$

PSR B1957+20 (Stappers et al. 2003)

PSR B2224+65 (Chatterjee \& Cordes 2002)

BOW SHOCK PWNE

$$
\begin{array}{r}
t_{e s c} V_{p s r}=R_{s n r}=\left(\frac{E_{s n}}{\rho_{i s m}}\right)^{1 / 5} t_{e s c}^{2 / 5} \\
\Rightarrow t_{e s c} \approx\left(\frac{E_{s n}}{\rho_{i s m}}\right)^{1 / 3}\left(\frac{1}{V_{p s r}}\right)^{5 / 3} \approx 2 \times 10^{5} \mathrm{yr}\left(\frac{E_{s n}}{10^{51} \mathrm{erg}}\right)^{1 / 3}\left(\frac{V_{p s r}}{200 \mathrm{~km} \mathrm{~s}^{-1}}\right)^{5 / 3}\left(\frac{n_{i s m}}{1 \mathrm{~cm}^{-3}}\right)^{-1 / 3}
\end{array}
$$

PSR B1957+20 (Stappers et al. 2003)

BOW SHOCK PWNE

Bucciantini - Catania UTS VIII 2023

PARIICLE ESCAPE

THE ARE BS PWNE WHERE THE X-RAV "TAL" IS WHERE IT SHOULD NOT BE!

THE PARTICLES IN THESE FEATURES ARE ~ PSR VOLIAGE

G327 (Temin et al 2009)

Geminga (HAWC Abeysekara et al 2017)

Guitar (Wong et al 2003)
TEV HALO SUGGEST STRONG DIFFUSION

PARTICLE ESCAPE - EC

Bucciantini - Catania UTS VIII 2023

DIVERSITY

GEOMETRY

Bucciantini 2018

THIS IS A FUNDAMENTALIY 3D SYSTEM SPIN VEL INCLINATION BISM SPIN INCLINATION PSR WIND ANISOTROPY PSR WIND MAGNEIZATION

OBSERVER INCLINATION

COMPUTATIONAL REQ.

RELATIVISTIC MHD - CORRECT JUMP AND POST SHOCK DYNAMCS
AMR - NECESSARY TO HANDLE DIFFERENT STRUCTURAL FEATURES OF VARIOUS SCALES
NEED TO SAMPLE A VAST PARAMEIER SPACE IN TERMS OF CONFIGURAIIONS
NEED TO EVOLVE FOR A LONG TIME IN ORDER TO REMOVE BIASES DUE TO INIIIAL CONDIIIONS

COMPUTATIONAL REQ.

RELATIVISTIC MHD - CORRECT JUMP AND POST SHOCK DYNAMICS
AMR - NECESSARY TO HANDLE D|FFERENT SIIRUCTURAL IEMTIDEC OE UADINUC CRAI EC
NEED TO SAMPLE A
NEED TO EVOLVE FO

[^0]
COMPUTATIONAL REO.

PLUTO + CHOMBO AMR

CINECA - BRD \& KNL - MARCONI

ABOUT 50 DIFFERENT CONFIGURATIONS

TEMPO VIA 2 REOUESTS WITH INAF CINECA CALSS A

TOTAL TIME 2018 - 2019 ABOUT 10MHR

ABOUT 10GB OF DATA FOR EACH RUN

POST PROCESSING - IN HOUSE CLUSTER

BOW-SHOCK

BOW-SHOCK

BOW-SHOCK

TURBULENCE

ISOTROPIC
ANISOTROPIC

TURBULENCE

ISOTROPIC

ANISOTROPIC

TURBULENCE

Olmi \& Bucciantini 2019

ANISOTROPIC $\sigma=0.01$

Olmi \& Bucciantini 2019b

PARICLE ESCAPE

CURRENT SHEEIS PRODUCE CONFINEMENT

PARIICLE AT VOLLAGE HAVE LARMOUR RADIUS ~ DO

PARTICLE ESCAPE

$$
d_{o}=\sqrt{\frac{L}{4 \pi c \rho_{o} V^{2}}},,
$$

CURRENT SHEETS PRODUCE CONFINEMENT

PARIICLEAT VOLLAGE HAVE LARMOUR RADIUS ~ DO

Bucciantini 2018

ROLE OF CURRENTS

ROLE OF CURRENTS

ROLE OF CURRENTS

ROLE OF CURRENTS

CONFINEMENT

MAGNETIC FIELD AND CURRENT STRUCTURE IN THE TAAL

ISM MAGNEIC FIELD IS IN THE Y (HORIZONTAL) DIRECTION

CONFINEMENT

MAGNETIC FIELD AND CURRENT STRUCTURE IN THE TAIL

ISM MAGNETC FIELD IS IN THE Y (HORIZONTAL) DIRECTION

Olmi \& Bucciantini 2019

Bucciantini - Catania UTS VIII 2023

JETS

VERY HIGH ENERGY

DIFFUSION

H|GH ENERGY

CURRENT CONFINEMENT

LOW ENERGY

RECONNECTION

JETS

JETS

LOW ENERGY PARTICLES REMAIN CONFINED IN CURRENTS

GEMINGA HARD TALLS

JETS

LOW ENERGY PARTICLES REMAIN CONFINED IN CURRENIS

GEMINGA HARD TALLS

JETS

LOW ENERGY PARTICLES REMAN CONFINED IN CURRENTS

GEMINGA HARD TALLS

VERY HIGH ENERGY PARTICLES CAN ALSO DIFFUSE AHEAD

MAUSE

X-RAY HALO

JETS

JETS

JETS

JETS

JETS

CONCLLUSONS

3D SIMULATIONS NECESSARY TO COMPARE THE CORRECT DYNAMICS IN THE HEAD AND TALL.

MAGNETIC TURBULENCE STRONGLY DEPENDENT ON WIND MAGNETISATION AND ENERGY ANISOTROPY

SYNCHROTRON EMISSIVITY SENSIIIVE TO MAGNEIIC CONFIGURATIONS ONLY FOR HIGH MAGNEIISAIIONS, AND QUASI-LAMINAR FLOW

HIGH ENERGY PARTICLES ESCAPE STRONGLY AFFECTED BY THE PRESENCE OF CURRENT SHEETS

DYNAMICS AT THE MAGNETOPAUSE CAN LEAD TO STRONG ANISOTROPY IN THE EMERGENT PARTICLE ENERGY FLUX

THANK YOU

[^0]: Bucciantini - Catania UTS VIII 2023

