Challenges in forthcoming CMB datasets

Giuseppe Puglisi

Università di Catania

15/06/2023

Istituto Nazionale di Fisica Nucleare

CMB anisotropies and primordial gravitational waves

E,±1 uK

Credits: Bicep2/Keck Collaboration

Credits: Planck Collaboration

Credits: Bicep2/Keck Collaboration

The state of the art of CMB spectra

Lensing B-modes have been detected, no detection on the primordial ones...yet

Planck Collaboration 2016

	20	40	60	<u>۹</u> ۵	100
0	20	40 μK _{RJ} @	30 GHz	00	100

and the second second

A second second					
					The Long
	3	10 μK _{RJ} @	30 353 GHz	100	

 A^P_{s}

 $A_{\rm d}^P$

2. Systematics effects

3. Sensitivity

10⁻¹ Approximate raw experimental sensitivity (µK) ۱0⁻²¹ 10⁻³

 10^{-4}

CMB Stage4 Concept Design Review 2020

CMB forthcoming experiments **Ground-based**

Simons Observatory, **Atacama Desert, Chile**

r~0.01 at >5 σ C.L.

r~0.003 at >5 σ C.L.

>100,000 detectors observing at: • multiple resolutions (both degree and arcminute)

• Multiple frequency bands 20-200 GHz

CMB forthcoming experiments Space-mission LiteBIRD

r~0.001 at >5 σ C.L.

- 22 frequency bands (40-400 GHz) - 10-70 arcmin resolution ~4500 detectors

Japan Aerospace Exploration Agency

Time Ordered Astrophysics Scalable Tools

- Simulation framework with C++ backend and python wrapper
- Tools for distributing data among multiple processes and nodes
- Generic operators for common data-reduction tasks (filtering, pointing) expansion, imaging)
- Basic classes for performing I/O in a limited set of formats
- Modules for simulating noise and systematic effects
- Experiment specific simulation framework (S4, SO, Litebird, *Planck*)
- Hybridization with GPU using JAX
- NASA TRL Demo: First Litebird full Focalplane simulations run performed at NERSC Super Computing center
- Total computational cost : ~80kcpuh on 1000 **Perlmutter nodes** w/o GPUs

Coping with forthcoming criticalities

- Foregrounds ML techniques to model Galactic emission (Farsian et al 2020, Thorne et al 2021, Krachmalnicoff&Puglisi 2021) and clean CMB maps (Puglisi&Bai 2020, Bennet et al 2020, Puglisi et al. 2022);
- 2. Systematic effects require innovative techniques to both efficiently injects and optimally mitigate them all;
- 3. Low sensitivity thanks to the high number of detectors requires a computationally intensive approach (->CN1 SPOKE3);
- Survey strategy Optimization -> minimizing metrics built from the volume spanned by instrument parameters;