

RADIO SOURCE DETECTION & CLASSIFICATION TOOLS FOR SKA & PRECURSORS

+ INAF-OACT radio, IT group & ML4ASTRO collaborators

🔊 | Outline

Scientific context

Developed software

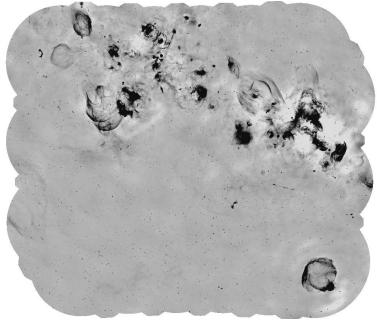
- $\circ \ \ \, \text{Motivations \& objectives}$
- $\circ~$ Overview of developed applications
 - ✓ *caesar* source finder
 - ✓ *caesar-mrcnn* source finder
 - ✓ sclassifier
- Ongoing developments
 - \checkmark Radio data representation with self-supervised learning
 - ✓ Synthetic image generation
 - ✓ Galactic SNR classification

Computing resources

Summary

- Experiences & gained expertises
- $\circ~$ Achieved objectives

| Scientific context & development drivers/goals



A sample tile from ASKAP EMU main survey @ 944 MHz

Galactic science objectives

- Census and characterization of Galactic radio source population
- Topics of interest: SNR, evolved stars, star-planet interaction, star-forming regions

Contributing to SKA & precursor science

- ASKAP EMU survey @ 944 MHz (~70% sky)
 - ✓ Early Science & Pilot Phase I & II surveys (2018-2021)
 - ✓ Main survey started in Dec. 2022
- MeerKAT Galactic Plane Survey (GPS) @ 1.2 GHz (lbl<1.5°, 2°<l<60°, 252<l<358°)
- Leadership roles
 - ✓ ASKAP-EMU: GP KSP & DP4 task
 - ✓ MeerKAT-GPS: board, paper PI-ships
 - ✓ SKA: "Our Galaxy" KSP, SRC WG6 core membership

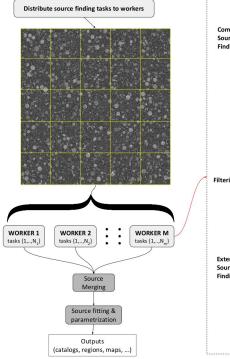
Challenges in source analysis tools in the SKA era

- Scalability vs increased data volume (e.g. image size, source density, etc)
- Catalogue automation and reproducibility

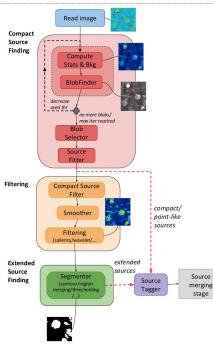
Technological goals

- $\circ~$ develop new tools allowing to:
 - \checkmark detect sources missed by traditional finders (e.g. extended/diffuse, multi-island)
 - ✓ classify sources (morphological/astronomical type, real vs spurious, Gal vs Extragal, etc)
 - \checkmark detect peculiar/anomalous sources in radio maps
- \circ exploit HPC & AI paradigms & infrastructures to scale-up computation

() CAESAR source finder



<u>https://github.com/SKA-INAF/caesar</u> <u>https://github.com/SKA-INAF/caesar-rest</u>



CAESAR: Compact And Extended Source Automated Recognition

Implementation

- C++
- $\circ~$ various 3rd-party libraries (OpenCV, MPI/OpenMP, protobuf ...)

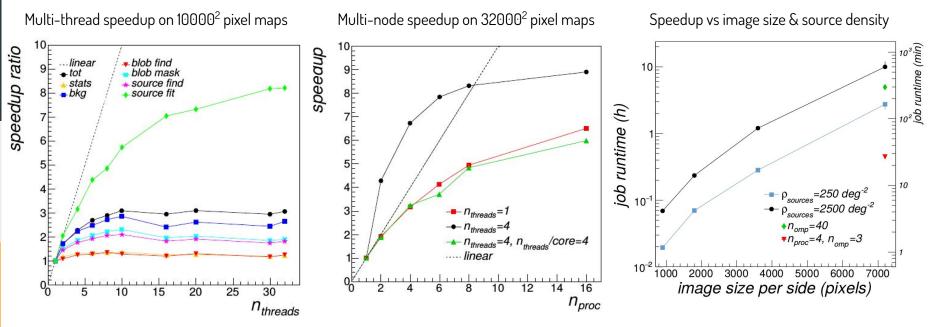
Main features

- $\circ~{\rm providing}~{\rm algorithms}$ for both compact & extended radio sources
- $\circ~$ scaling to large maps using 2 levels of parallelism
 - \checkmark Input map divided into tile groups, processed in parallel by MPI procs
 - Multi-thread processing (OpenMP) per each tile for source extraction stages (e.g. bkg computing, flood-fill, fitting)
- providing richer outputs & API for post-processing catalogue analysis

Web service developed (*caesar-rest*)

- deployed on a Kubernetes cluster, provided by GARR for the H2020 NEANIAS project (EOSC prototype)
- integrated with ViaLactea visualization client (see Tudisco's presentation)

CAESAR source finder



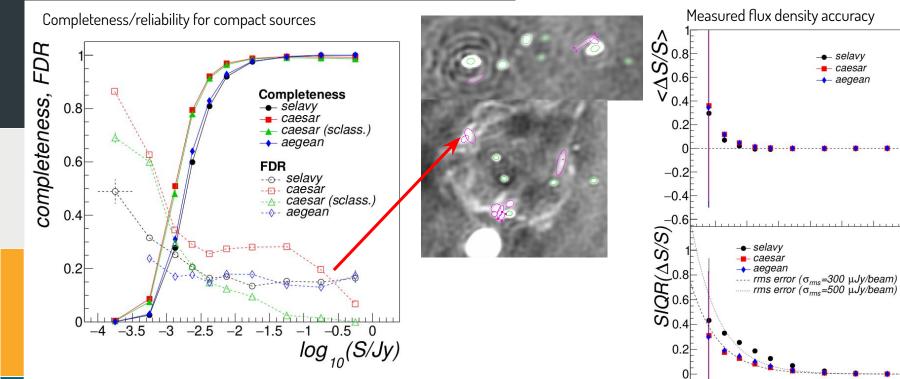
Scalability tests on 2 nodes connected through a 10 Gbit network link

- Node specs: 4 sockets x 10 Core Intel(R) Xeon(R) CPU E5-4627 2.60 GHz, 256 GB DDR4
- Moderate speedup (x 3) obtained up to 8-10 threads (speedup affected by serial parts and thread communication)
- Multi-node speedup optimal up to ~8-10 MPI processes
- Running times dominated by blob finding (flood-fill + nested blob search) and fitting
- Logging and NFS filesystem also negatively impacts running times

More details here:

S. Riggi, PASA, 36, E037 (2019) S. Riggi, A&C, 37, 100506 (2021) M. Boyce, PASA, accepted (2023)

CAESAR source finder



- Performances comparable across different finders
- High false detection rate (due to extended source deblending and imaging artefacts) improving with classification analysis

selavy

- caesar

🔶 aegean

-0.2

-2

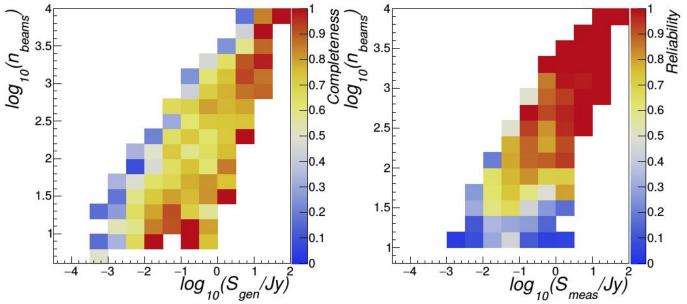
-1.5

 $\log_{10}(\widetilde{S}/Jy)$

-2.5

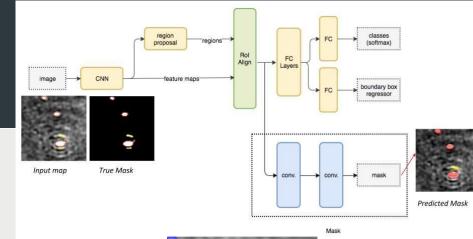
CAESAR source finder

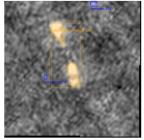
Completeness/reliability for extended sources

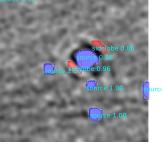


- Performances on extended sources depending on the source size and flux density as expected
 - Completeness: ~60-70% (faint sources), ~80% (bright sources)
 - Reliability: ~70% (faint sources), ~90% (bright sources)
- Majority of missed sources are ring/arc-shaped
- Inferior performances compared to compact sources

() CAESAR-MRCNN source finder







For more details: S. Riggi et al, A&C, 42, 100682 (2023) <u>https://github.com/SKA-INAF/caesar-mrcnn</u> https://github.com/SKA-INAF/caesar-mrcnn-tf2 **CAESAR-MRCNN**: Compact And Extended Source Automated Recognition with Mask R-CNN framework

Implementation

- $\circ~$ python + TensorFlow v1 & v2
- MPI (for parallel inference on large maps)

Main features

- Providing source segmentation masks + classification info (class label & score)
- Classifying among 5 possible source classes:
 - \checkmark spurious: imaging artefacts around bright sources
 - ✓ *compact*: single-island sources (point-like or slightly resolved)
 - ✓ extended: single-island (1+ components) extended sources
 - ✓ extended-multisland: multi-island (1+ components) extended sources
 - ✓ *flagged*: sources contaminated by artefacts
- Trained on different radio surveys (~12k images)
 - ✓ VLA FIRST, ATCA Scorpio, ASKAP EMU pilot, MeerKAT GPS

CAESAR-MRCNN source finder

Detection & classification metrics (@loU=0.5) on test sample:

- compact: C~90%, R~60%, F1~98%
- o extended: C~80%, R~85%, F1~83%
- o extended-multisland: C~65%, R~88%, F1~90%
- o *spurious*: C~45%, R~35%, F1~90%
- o *flagged*: C~78%, R~88%, F1~85%

Performances depend on many aspects:

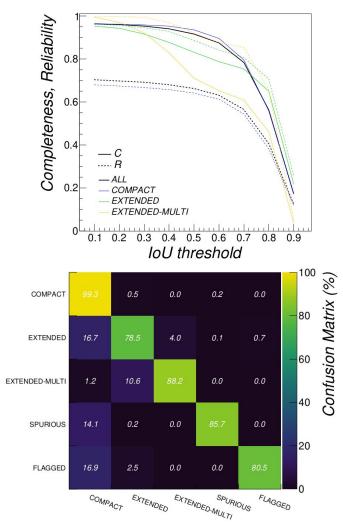
- Type of survey (single-survey vs mixed-surveys) used for training
- Size of the source (perf. degrading for too small or too large sources)
- Dataset limitations (missing labeled sources, class unbalance, etc)

Training/inference times

- Train: ~2h/epoch (RTX 6000), ~4h/epoch (K40)
- Inference: ~2 s on CPU

Ongoing activities are focusing on:

- o Increasing train dataset size with both real & synthetic data
- Exploring alternative deep learning models, architectures, and implementations
- Improving backbone pre-training (e.g. using self-supervised radio representations)

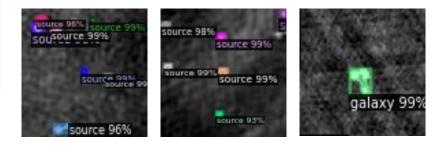


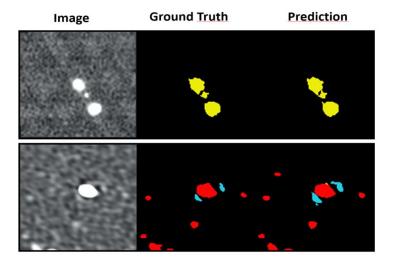
9

(2월 | Survey of object detector frameworks

DE:TR

- Transformer model for object detection
- Removes the necessity for RPN, typical of R-CNN based models
- Heavier in terms of resources
- Preliminary results in images below

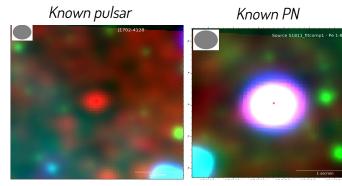




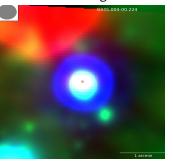
Semantic Segmentation with Tiramisu model

- Uses semantic segmentation, a different approach than object detection, to achieve the same goal of source detection
- Based on U-Net model
- Comparable results with Mask R-CNN

Radio source classifier



Known Hll region



For more details: *S. Riggi et al, (2023), submitted* https://github.com/SKA-INAF/sclassfiier

sclassifier: source classification tool

Implementation

- python + TensorFlow v2
- various 3rd party libraries: scutout, Montage, sklearn, ...
- MPI (for parallel inference on large maps)

Main features

- Various methods for feature extraction/selection, image classification, outlier detection, etc
 - ✓ <u>Supervised</u>: CNN, LightGBM + other sklearn classifiers
 - Self-supervised: SimCLR, BYOL
 - ✓ <u>Unsupervised/dim reduction</u>: Conv. Autoencoders, UMAP, HDBSCAN
- Trained & tested on different radio survey data

Various analysis ongoing

- Supervised compact source classification
- Radio source morphology classification
- Radio image classification
- Radio data representation learning

Compact source supervised classification

og 10(F

Goal: classify Galactic vs extragalactic objects

• Dataset

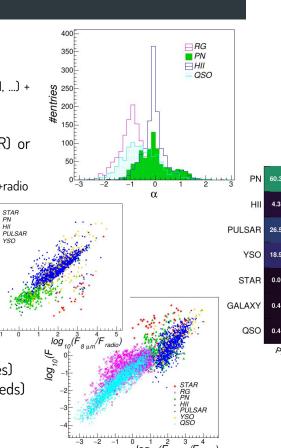
- ✓ 20k compact source images from radio (FIRST, ASKAP, THOR, CORNISH, ...) + infrared (WISE, HiGAL) surveys
- ✓ 7 classes: Radio Galaxy (RG), QSO, PN, HII, Pulsar, YSO, Radio Star
- **Method:** 2 supervised classifiers used on 5-channel (radio+MIR) or 7-channel (radio+MIR+FIR) images
 - ✓ LightGBM: trained on pre-computed features: radio-infrared colors (+radio spectral indices)
 - ✓ CNN: automatically extracting features from multi-chan images

Classification results

- LightGBM trees outperforming CNNs in performance
- $\circ~$ RGs, PNe, and HII regions best classified among classes
- \circ $\,$ FIR and spectral index features improving classification $\,$

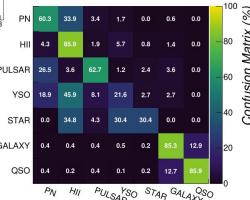
Major analysis limitations

- $\circ~$ Lack of homogeneous radio labelled data (e.g. different frequencies)
- Limited number of training data for some Galactic classes (~hundreds)
- Few and dubious catalogued extragalactic objects in the GP
- No full-sky coverage for discriminant surveys (e.g. 70 um)



For more details: *S. Riggi et al, (2023), submitted*

	F1-score (%)					
	MIR	MIR+FIR	MIR+ α	MIR+FIR+a		
	(2)	(3)	(4)	(5)		
GAL	95.6	-	97.3	-		
EGAL	98.9	-	96.6	-		
ALL	98.3	_	97.0	-		
PN	58.5	72.4	74.3	77.4		
HII	80.7	88.1	87.5	90.4		
PULSAR	69.6	69.2	78.8	76.6		
YSO	18.0	25.3	23.4	31.5		
STAR	31.1	38.8	29.6	46.4		
RG	87.5	-	81.6	-		
QSO	84.2	-	83.8	-		
ALL	82.8	73.3	78.1	76.6		

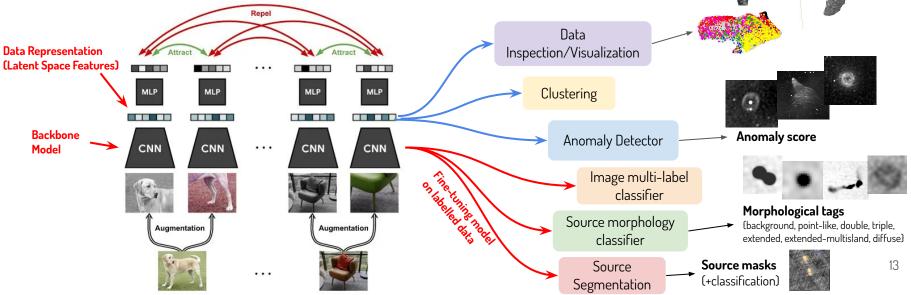


Limitations of supervised ML approaches

- Requiring large labelled data sets (unfeasible human efforts)
- Labels often poorly defined or varying across radio domains/communities
- Unbalanced datasets (class and survey unbalance)

Self-supervised methods learn data representations without the need for labels

- Representations & model can be used for various downstream tasks (supervised/unsupervised)
- Popular contrastive learning frameworks work by contrasting positive and negative augmented image views



Radio Data Representation with Self-Supervised Learning

Training SimCLR & BYOL on large unlabelled radio data

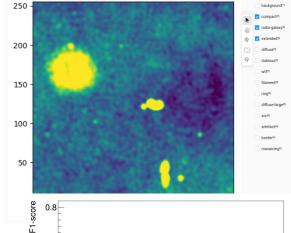
- Dataset: ~250k (256x256, 128x128) images (ASKAP EMU, MeerKAT GPS)
 ✓ NB: Dataset size can be easily increased (no labels needed)
- Architectures: resnet18
 - ✓ NB: Available GPUs prevent us to use deeper network and batch sizes >128-256
- **Pre-processing**: 1 or 3-channels + stretching (sigma clip, hist eq., zscale) + resizing (224x224 or 128x128)
- Augmentation: blur + (crop) + zscale contrast adjust + flip + rotate
- Training times: 12-15 h/epoch on PLEIADI INAF-OACT infrastructure

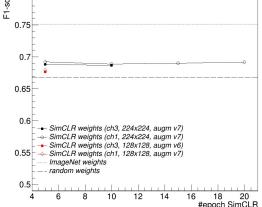
Evaluating and fine-tuning model on different downstream tasks

- UC1: Multi-label radio image classification (~11k labelled images)
- UC 2: Radio morphology classification (~20.5k labelled images)
- UC 3: Radio source segmentation (12.8k labelled images)

Preliminary results and lessons learnt

- No improvement wrt ImageNet pre-training on UC1
 - ✓ Compact sources dominates, too few extended sources
 - ✓ Many objects, not "centred" in the cutouts (as in Radio Galaxy Zoo data)
 - \checkmark Batch size and trained epochs are too small
 - ✓ Augmentation scheme to be improved
- Need some smart selection of unlabelled radio data used for training





🔅 | Synthetic Radio Image Generation

■ Goal: generate synthetic images & their segmentation masks to:

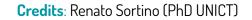
- \circ increase size of annotated dataset used for training object segmentation models
- rebalance object classes in train datasets
- \circ $\,$ create large radio maps for data challenge scopes $\,$

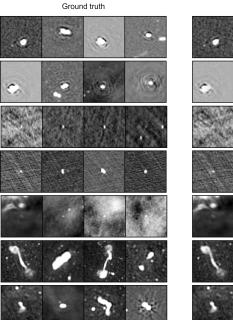
Methodology used

- o controllable (by multiple conditions) latent diffusion models
- Computing resources used
 - o GPU NVIDIA RTX 3090 24GB (UNICT), training taking few days per train experiment, ~seconds in inference

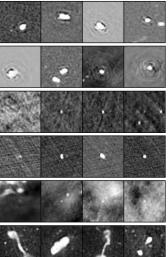
Preliminary results

- Better metrics (FID, SSIM) on image conditional generation wrt state-of-the-art models (SPADE, INADE)
- \circ $\;$ Improving existing model performances with synthetic data augmentation

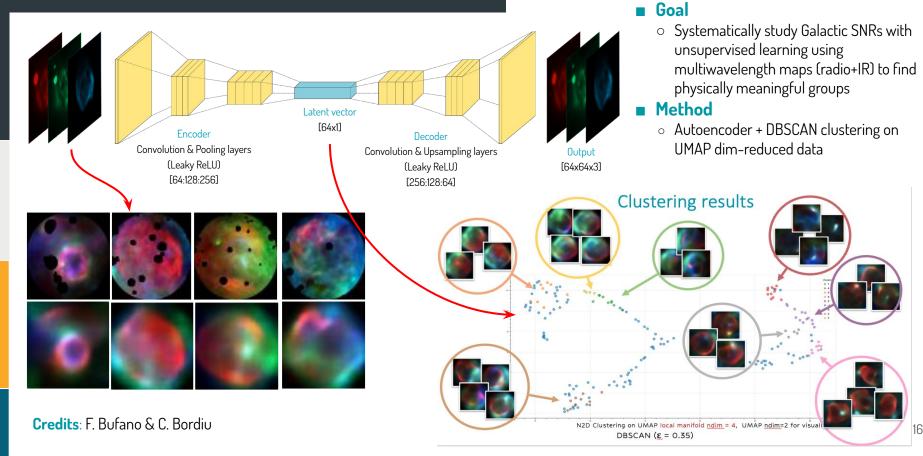




Reconstructed



(한) | Galactic SNR Classification



Computing Resources

Local Resources	Description	Access Policy	Performed Runs	Notes
MUP-Cluster @ OACT	Cores: 192 Mem/Core: 5.2 GB Network: 1 Gbit Ethernet Storage: 70 TB GPUs: N.A.	Core/storage 90% reserved to CHIPP INAF projects through periodic calls.	CAESAR testing Simulated library production	Now decommissioned
LOFAR IT @ OACT	Cores: 128 Mem/Core: 6.4 GB Network: 10 Gbit Ethernet Storage: 40 TB GPUs: 1 K40m (12 GB)	100% reserved for INAF LOFAR projects	CAESAR parallel testing	
PLEIADI @ OACT	Cores: 2808 Mem/Core: 3.6 GB, 7.1 GB Network: 100 Gbit omnipath Storage: 170 TB GPUs: 4 K40m (12 GB) + 2 V100 (16 GB)	100% reserved for INAF PLEIADI projects through periodic calls.	Self-supervised, object detector, source/image classification training & inference.	
Radio Infra @ OACT	Cores: 64 Mem/Core: 8 GB, 10.7 GB Network: 1 Gbit Ethernet Storage: 55 TB GPUs: 1 RTX 6000 (24 GB)	100% reserved for radio OACT projects	Self-supervised, object detector, source/image classification training & inference, SKA precursor data analysis	Enhancement foreseen with the PNRR STILES & KM3NET project.

■ Nice-to-have computing resources @ INAF

- At least one dedicated high-memory GPUs (e.g. >24 GB)
- $\circ\,$ At least ~50 TB additional dedicated storage
- A non-HPC infrastructure (e.g. engineered for running containerized services), INAF-shared

Experiences & gained expertises

- Exposure to various technologies during development
 - ✓ Libraries for developing ML applications (e.g. TensorFlow, PyTorch, sklearn)
 - ✓ Libraries for developing parallel applications (e.g. MPI C++/python, OpenMP)
 - ✓ Libraries for developing image processing applications (e.g. OpenCV, skimage)
 - ✓ Libraries for running containerized applications (e.g. Docker, Singularity, Kubernetes)
 - ✓ Various ML models for different tasks: image classification, object segmentation, image generation, etc
 - ✓ Libraries for data version control: dvc
 - ✓ Libraries for astronomical data analysis (e.g. astropy, CASA, ...)
- $\circ~$ Bridging the gap between IT & researcher local communities
 - \checkmark Researchers being exposed to ML technologies & methodologies
 - ✓ People from Al world (PhD students) being exposed to astronomical data formats & analysis

Objectives achieved

- $\circ~$ Developed various tools ~& curated dataset for radio source analysis
- Performances estimated on both simulated and real data from different SKA precursor surveys
- $\circ~$ Parallel implementation provided for some of them to support runs on HPC infrastructures
- $\,\circ\,$ Some of the tools already used to produce scientific results within ASKAP & MeerKAT GP teams

The road is still long ...

- $\circ~$ More people & efforts needed in data preparation and science requirements definition
- Ongoing studies focusing on algorithm improvements

THANKS TO ALL CONTRIBUTORS

R. Sortino (UNICT/INAF), T. Cecconello (UniCT/INAF), C. Bordiu (INAF), M. Bufano (INAF)

+ the INAF-OACT radio, IT group & ML4ASTRO collaboration