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| Scientific context & development drivers/goals

m Galactic science objectives
o Census and characterization of Galactic radio source population
o Topics of interest: SNR, evolved stars, star-planet interaction, star-forming regions

m Contributing to SKA & precursor science

o ASKAP EMU survey @ 944 MHz (~70% sky)
v Early Science & Pilot Phase | & Il surveys (2018-2021)
v Main survey started in Dec. 2022

o MeerKAT Galactic Plane Survey (GPS) @ 1.2 GHz (Ibl<1.5°, 2°<I<60°, 252<I<358°)

o Leadership roles
v ASKAP-EMU: GP KSP & DP4 task
v MeerKAT-GPS: board, paper Pl-ships
v SKA: “Our Galaxy” KSP, SRC WG6 core membership

5 m Challenges in source analysis tools in the SKA era
‘ o Scalability vs increased data volume (e.g. image size, source density, etc)
o Catalogue automation and reproducibility

m Technological goals
o develop new tools allowing to:
v detect sources missed by traditional finders (e.g. extended/diffuse, multi-island)

v classify sources (morphological/astronomical type, real vs spurious, Gal vs Extragal, etc)
v detect peculiar/anomalous sources in radio maps

A sample tile from ASKAP EMU main survey @ 944 MHz o exploit HPC & Al paradigms & infrastructures to scale-up computation




o> | CAESAR source finder

[ Distribute source finding tasks to workers }
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CAESAR: Compact And Extended Source Automated Recognition

m Implementation
o C++
o various 3rd-party libraries (OpenCV, MPI/0penMP, protobuf ...J
m Main features
o providing algorithms for both compact & extended radio sources

o scaling to large maps using 2 levels of parallelism

v Input map divided into tile groups, processed in parallel by MPI procs
v Multi-thread processing (OpenMP) per each tile for source extraction stages
(e.g. bkg computing, flood-fill, fitting)
o providing richer outputs & API for post-processing catalogue

analysis
m Web service developed (caesar-rest)
o deployed on a Kubernetes cluster, provided by GARR for the H2020
NEANIAS project (EOSC prototype)
o integrated with ViaLactea visualization client (see Tudisco’s
presentation)


https://github.com/simoneriggi/ska.git
https://github.com/SKA-INAF/caesar-rest

diib | CAESAR source finder

Multi-thread speedup on 180002 pixel maps Multi-node speedup on 320007 pixel maps Speedup vs image size & source density
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Scalability tests on 2 nodes connected through a 10 Gbit network link

m  Node specs: 4 sockets x 10 Core Intel(R) Xeon(R) CPU E5-4627 2.60 GHz, 256 GB DDR4
Moderate speedup (x 3) obtained up to 8-10 threads (speedup affected by serial parts and thread communication) More details here:
Multi-node speedup optimal up to ~8-18 MPI processes S. Riggi, PASA, 36, E037 (2019)
Running times dominated by blob finding (flood-fill + nested blob search) and fitting 5-Riggi. ASC. 37,100506 (2021
Logging and NFS filesystem also negatively impacts running times M. Boyce, PASA, accepted (2023)

job runtime (min)



diib | CAESAR source finder

Completeness/reliability for compact sources Measured flux density accuracy
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diib | CAESAR source finder

Completeness/reliability for extended sources
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m  Performances on extended sources depending on the source size and flux density as expected
o Completeness: ~-60-70% (faint sources), ~80% (bright sources)
o Reliability: ~70% (faint sources), ~30% (bright sources)

m  Majority of missed sources are ring/arc-shaped

m  Inferior performances compared to compact sources




$ox | CAESAR-MRCNN source finder

o | el CAESAR-MRCNN: Compact And Extended Source
_______________ - ) Automated Recognition with Mask R-CNN framework
. o L i —'“e;”:io“ m Implementation

o python + TensorFlow vl &v2
o MPI (for parallel inference on large maps)

m Main features
o Providing source segmentation masks + classification info

Input map True Mask

(class label & score)

o Classifying among S possible source classes:
v spurious: imaging artefacts around bright sources
v compact: single-island sources (point-like or slightly resolved)
v extended: single-island (1+ components) extended sources
v extended-multisland: multi-island (1+ components) extended sources
v flagged- sources contaminated by artefacts

source .00

-, e ' o Trained on different radio surveys (~12k images)
v VLAFIRST, ATCA Scorpio, ASKAP EMU pilot, MeerKAT GPS

seurce 1.00

For more details: S. Riggi et al, AGC, 42, 100682 (2023)
https:/github.com/SKA-INAF/caesar-mrcnn 10
https:/github.com/SKA-INAF/caesar-mrcnn-tf2



https://github.com/SKA-INAF/caesar-mrcnn
https://github.com/SKA-INAF/caesar-mrcnn

diib | CAESAR-MRCNN source finder
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m Detection & classification metrics (@loU=0.5) on test sample: o
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m Performances depend on many aspects:
o Type of survey (single-survey vs mixed-surveys) used for training

loU threshold

o Size of the source (perf. degrading for too small or too large sources) —
o Dataset limitations (missing labeled sources, class unbalance, etc)

EXTENDED

m Training/inference times
o Train: ~2h/epoch (RTX 6000), ~4h/epoch (K40)

o Inference: ~2 s on CPU

EXTENDED-MULTI

SPURIOUS

m Ongoing activities are focusing on:
o Increasing train dataset size with both real & synthetic data

FLAGGED

o Exploring alternative deep learning models, architectures, and implementations

o Improving backbone pre-training (e.g. using self-supervised radio representations) oy, Heng, E*rENDED_MiPw,OUs g,
LTy

Confusion Matrix (%)



% | Survey of object detector frameworks

DE:TR

Transformer model for object detection

m Removes the necessity for RPN, typical of R-CNN based models
m Heavier in terms of resources
]

Preliminary results in images below

For more details: R. Sortino et al, Experimental Astronomy (2023)

Image Ground Truth Prediction

Semantic Segmentation with Tiramisu model
m Uses semantic segmentation, a different approach than object
detection, to achieve the same goal of source detection
m Based on U-Net model
m Comparable results with Mask R-CNN



$ob | Radio source classifier

Known pulsar Known PN . . .
sclassifier: source classification tool

m Implementation
o python + TensorFlow v2
o various 3rd party libraries: scutout, Montage, sklearn, ...
o MPI (for parallel inference on large maps)

m Main features

O Various methods for feature extraction/selection, image classification,

outlier detection, etc
v Supervised: CNN, LightGBM + other sklearn classifiers
v Self-supervised: SimCLR, BYOL
v Unsupervised/dim reduction: Conv. Autoencoders, UMAP, HDBSCAN

o Trained & tested on different radio survey data

m Various analysis ongoing

o Supervised compact source classification
Radio source morphology classification
Radio image classification
Radio data representation learning

o O O

For more details: S. Riggi et al, (2023), submitted
https:/github.com/SKA-INAF/sclassfiier



https://github.com/SKA-INAF/caesar-mrcnn

For more details:

b | Compact source supervised classification B

Fl-score (%)

MIR  MIR+FIR  MIR+a  MIR+FIR+a

2) 3) “) )
o o o . GAL 95.6 - 97.3 -
m Goal: classify Galactic vs extragalactic objects s 989 - %6 -
o Dataset Ht %07 s #5904
v/ 20k compact source images from radio (FIRST, ASKAP, THOR, CORNISH, .J + @ o~ 10 23 24 3
infrared (WISE, HiGAL) surveys ‘qi: e ;;; 8 e fo04
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v LightGBM: trained on pre-computed features: radio-infrared colors (+radio a o;'
spectral indices) 3 F E §
v CNN: automatically extracting features from multi-chan images %é o PULSAR E
m Classification results % ¥ 2
o LightGBM trees outperforming CNNs in performance ol STAR 3
o RGs, PNe, and HIl regions best classified among classes 2

GALAXY

o FIR and spectral index features improving classification t

Qso

m Major analysis limitations

e v Hir Py 4');80 STag Garq ){?/so °
o Lack of homogeneous radio labelled data (e.g. different frequencies) 53
o Limited number of training data for some Galactic classes (~hundreds) s
o Few and dubious catalogued extragalactic objects in the GP o
o No full-sky coverage for discriminant surveys (e.g. 70 um) L
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%% | Radio Data Representation with Self-Supervised Learning

m Limitations of supervised ML approaches
o Requiring large labelled data sets (unfeasible human efforts)
o Labels often poorly defined or varying across radio domains/communities
o Unbalanced datasets (class and survey unbalance)
m Self-supervised methods learn data representations without the need for labels
o Representations & model can be used for various downstream tasks (supervised/unsupervised)
o Popular contrastive learning frameworks work by contrasting positive and negative augmented image views

Data
Inspection/Visualization

Data Representation % Attract 4,

(Latent Space Features)

N\ Clusering
T

O

Attract

Backbone

Anomaly Detector ——> Anomaly score
Model

Image multi-label ~ e ‘

classifier

Morphological tags
Source morphology __—> {background, point-like, double, triple,
classifier extended, extended-multisland, diffuse}

Augmentation

Source Sourcg ma§ks
Segmentation (+classification)




il | Radio Data Representation with Self-Supervised Learning

m Training SimCLR & BYOL on large unlabelled radio data
o Dataset: ~250k (256x256, 128x128) images (ASKAP EMU, MeerKAT GPS)

v/ NB: Dataset size can be easily increased (no labels needed)

o Architectures: resnet!8
v NB: Available GPUs prevent us to use deeper network and batch sizes >128-256

o Pre-processing: 1 or 3-channels + stretching (sigma clip, hist eq. zscale) + resizing
(224x224 or 128x128)

o Augmentation: blur + (crop) + zscale contrast adjust + flip + rotate

o Training times: 12-15 h/epoch on PLEIADI INAF-0ACT infrastructure

m Evaluating and fine-tuning model on different downstream tasks
o UC1: Multi-label radio image classification (~11k labelled images) i
o UC 2: Radio morphology classification (~20.5k labelled images) 0.75
o UC 3: Radio source segmentation (12.8k labelled images) '

0.8

o
o
<]
(5]
P
o
L

07
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m Preliminary results and lessons learnt 065
o No improvement wrt ImageNet pre-training on UC1 g
v/ Compact sources Ejominat?s, too few extended sources O SimoL woiohts (o, 224224, augm v7)
v’ Many objects, not “centred” in the cutouts (as in Radio Galaxy Zoo data) A i (oot 224aact aum V7).
v Batch size and trained epochs are too small RS e+ ST e e et s
v Augmentation scheme to be improved | —- random weights
1 1 el 0.57|\\‘\l\l\\\‘l\l‘\\\\\l\‘\\l‘l\\‘\
o Need some smart selection of unlabelled radio data used for training T T T T

#epoch SIimCLR




@ ‘ Synthetlc Radio |mage Generation Credits: Renato Sortino (PhD UNICT)

Pixel Space Latent Space ( Condition Ground truth Reconstructed

== S — Forward Diffusion | —
z zr
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m Goal: generate synthetic images & their segmentation masks to:
o increase size of annotated dataset used for training object segmentation models
o rebalance object classes in train datasets
o create large radio maps for data challenge scopes
m Methodology used
o controllable (by multiple conditions) latent diffusion models
m Computing resources used
o GPUNVIDIA RTX 3090 24GB (UNICT), training taking few days per train experiment, ~seconds in inference
m Preliminary results
o Better metrics (FID, SSIM) on image conditional generation wrt state-of-the-art models (SPADE, INADE)
o Improving existing model performances with synthetic data augmentation




$ox | Galactic SNR Classification

m Goal
o Systematically study Galactic SNRs with
unsupervised learning using
multiwavelength maps (radio+IR) to find
physically meaningful groups

Latent vector | MethOd
, Encoder [B4x1 \ o Autoencoder + DBSCAN clustering on
Convolution & Pooling layers Convolution & Upsampling layers Output UMAP dim-reduced data
(Leaky RelU)

(Leaky ReLU) [64x64x3]

[64:128:2561 [256:128:64]

Clustering results

Credits F. BUFanO & C‘ BOrdiU ..... I\IAZD.Ch;ste.rim; on UMAP local manifold ndim = 4, UMAP ndim=2 for visual . 4

DBSCAN (g = 0.35) k. 16




=== | Computing Resources

Local Resources

Description

Access Policy

Performed Runs

Notes

MUP-Cluster Cores: 192 Core/storage 90% reserved to CHIPP INAF CAESAR testing Now decommissioned
@ 0ACT Mem/Core: 52 GB projects through periodic calls. Simulated library production
Network: 1 Gbit Ethernet
Storage: 70 TB
GPUs: NA.
LOFARIT Cores: 128 100% reserved for INAF LOFAR projects CAESAR parallel testing
@ OACT Mem/Core: 64 GB
Network: 10 Gbit Ethernet
Storage: 40 TB
GPUs: 1K40m (12 GB)
PLEIADI Cores: 2808 100% reserved for INAF PLEIADI projects Self-supervised, object detector,
@ OACT Mem/Core: 3.6 GB, 71 GB through periodic calls. source/image classification training &
Network: 100 Gbit omnipath inference.
Storage: 170 TB
GPUs: 4 K40m (12 GB) + 2 V100 (16 GB)
Radio Infra Cores: 64 100% reserved for radio OACT projects Self-supervised, object detector, Enhancement foreseen with the PNRR STILES &
@ 0ACT Mem/Core: 8 GB, 10.7 GB source/image classification training &  [KM3NET project.

Network: 1 Gbit Ethernet
Storage: 55 TB
GPUs: 1 RTX 6000 (24 GB)

inference, SKA precursor data analysis

m Nice-to-have computing resources @ INAF
o At least one dedicated high-memory GPUs (e.g. >24 GB)
o Atleast ~50 TB additional dedicated storage
o A non-HPC infrastructure (e.g. engineered for running containerized services), INAF-shared



@ | Summary

m Experiences & gained expertises
o Exposure to various technologies during development
Libraries for developing ML applications (e.g. TensorFlow, PyTorch, sklearn)
Libraries for developing parallel applications (e.g. MPI C++/python, OpenMP)
Libraries for developing image processing applications (e.g. OpenCV, skimage)
Libraries for running containerized applications (e.g. Docker, Singularity, Kubernetes)
Various ML models for different tasks: image classification, object segmentation, image generation, etc
Libraries for data version control: dvc

NNENENENENENEN

Libraries for astronomical data analysis (e.g. astropy, CASA, ..

o Bridging the gap between IT & researcher local communities
v Researchers being exposed to ML technologies & methodologies
v People from Al world (PhD students) being exposed to astronomical data formats & analysis

m Objectives achieved
o Developed various tools & curated dataset for radio source analysis
o Performances estimated on both simulated and real data from different SKA precursor surveys
o Parallel implementation provided for some of them to support runs on HPC infrastructures
o Some of the tools already used to produce scientific results within ASKAP & MeerKAT GP teams

m Theroad is still long ...
o More people & efforts needed in data preparation and science requirements definition
o Ongoing studies focusing on algorithm improvements
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