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            Outline

■ Scientific context
■ Developed software

○ Motivations & objectives
○ Overview of developed applications

✓ caesar source finder
✓ caesar-mrcnn source finder
✓ sclassifier

○ Ongoing developments
✓ Radio data representation with self-supervised learning
✓ Synthetic image generation
✓ Galactic SNR classification

■ Computing resources
■ Summary

○ Experiences & gained expertises
○ Achieved objectives
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            Scientific context & development drivers/goals

A sample tile from ASKAP EMU main survey @ 944 MHz 

■ Galactic science objectives
○ Census and characterization of Galactic radio source population
○ Topics of interest: SNR, evolved stars, star-planet interaction, star-forming regions

■ Contributing to SKA & precursor science
○ ASKAP EMU survey @ 944 MHz (~70% sky)

✓ Early Science & Pilot Phase I & II surveys (2018-2021)
✓ Main survey started in Dec. 2022

○ MeerKAT Galactic Plane Survey (GPS) @ 1.2 GHz (|b|<1.5°, 2°<l<60°, 252<l<358°)
○ Leadership roles

✓ ASKAP-EMU: GP KSP & DP4 task
✓ MeerKAT-GPS: board, paper PI-ships
✓ SKA: “Our Galaxy” KSP, SRC WG6 core membership 

■ Challenges in source analysis tools in the SKA era
○ Scalability vs increased data volume (e.g. image size, source density, etc)
○ Catalogue automation and reproducibility

■ Technological goals
○ develop new tools allowing to:

✓ detect sources missed by traditional finders (e.g. extended/diffuse,  multi-island) 
✓ classify sources (morphological/astronomical type, real vs spurious, Gal vs Extragal, etc)
✓ detect peculiar/anomalous sources in radio maps

○ exploit HPC & AI paradigms & infrastructures to scale-up computation 
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            CAESAR source finder

CAESAR: Compact And Extended Source Automated Recognition

■ Implementation
○ C++
○ various 3rd-party libraries (OpenCV, MPI/OpenMP, protobuf …)

■ Main features
○ providing algorithms for both compact & extended radio sources
○ scaling to large maps using 2 levels of parallelism 

✓ Input map divided into tile groups, processed in parallel by MPI procs
✓ Multi-thread processing (OpenMP) per each tile for source extraction stages 

(e.g. bkg computing, flood-fill, fitting)
○ providing richer outputs & API for post-processing catalogue 

analysis
■ Web service developed (caesar-rest) 

○ deployed on a Kubernetes cluster, provided by GARR for the H2020 
NEANIAS project (EOSC prototype)

○ integrated with ViaLactea visualization client (see Tudisco’s 
presentation)https://github.com/SKA-INAF/caesar

https://github.com/SKA-INAF/caesar-rest 

https://github.com/simoneriggi/ska.git
https://github.com/SKA-INAF/caesar-rest
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            CAESAR source finder

Scalability tests on 2 nodes connected through a 10 Gbit network link
■ Node specs: 4 sockets x 10 Core Intel(R) Xeon(R) CPU E5-4627 2.60 GHz, 256 GB DDR4
■ Moderate speedup (x 3) obtained up to 8-10 threads (speedup affected by serial parts and thread communication) 
■ Multi-node speedup optimal up to ~8-10 MPI processes
■ Running times dominated by blob finding (flood-fill + nested blob search) and fitting
■ Logging and NFS filesystem also negatively impacts running times 

Multi-thread speedup on 100002 pixel maps Multi-node speedup on 320002 pixel maps Speedup vs image size & source density 

More details here:
S. Riggi, PASA, 36, E037 (2019)
S. Riggi, A&C, 37, 100506 (2021)
M. Boyce, PASA, accepted (2023)
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            CAESAR source finder

■ Performances comparable across different finders
■ High false detection rate (due to extended source deblending and imaging artefacts) 

improving with classification analysis

Completeness/reliability for compact sources Measured flux density accuracy
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            CAESAR source finder

■ Performances on extended sources depending on the source size and flux density as expected
○ Completeness: ~60-70% (faint sources), ~80% (bright sources)
○ Reliability: ~70% (faint sources), ~90% (bright sources)

■ Majority of missed sources are ring/arc-shaped
■ Inferior performances compared to compact sources

Completeness/reliability for extended sources
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            CAESAR-MRCNN source finder
CAESAR-MRCNN: Compact And Extended Source 
Automated Recognition with Mask R-CNN framework

■ Implementation 
○ python + TensorFlow v1 & v2
○ MPI (for parallel inference on large maps)

■ Main features
○ Providing source segmentation masks + classification info 

(class label & score)
○ Classifying among 5 possible source classes:

✓ spurious: imaging artefacts around bright sources
✓ compact: single-island sources (point-like or slightly resolved)
✓ extended: single-island (1+ components) extended sources 
✓ extended-multisland: multi-island (1+ components) extended sources
✓ flagged: sources contaminated by artefacts

○ Trained on different radio surveys (~12k images)
✓ VLA FIRST, ATCA Scorpio, ASKAP EMU pilot, MeerKAT GPS

For more details: S. Riggi et al, A&C, 42, 100682 (2023)
https://github.com/SKA-INAF/caesar-mrcnn
https://github.com/SKA-INAF/caesar-mrcnn-tf2

https://github.com/SKA-INAF/caesar-mrcnn
https://github.com/SKA-INAF/caesar-mrcnn
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            CAESAR-MRCNN source finder
■ Detection & classification metrics (@IoU=0.5) on test sample:

○ compact: C~90%, R~60%, F1~98%
○ extended: C~80%, R~85%, F1~83%
○ extended-multisland: C~65%, R~88%, F1~90%
○ spurious: C~45%, R~35%, F1~90%
○ flagged: C~78%, R~88%, F1~85%

■ Performances depend on many aspects:
○ Type of survey (single-survey vs mixed-surveys) used for training 
○ Size of the source (perf. degrading for too small or too large sources)
○ Dataset limitations (missing labeled sources, class unbalance, etc) 

■ Training/inference times
○ Train: ~2h/epoch (RTX 6000), ~4h/epoch (K40)
○ Inference: ~2 s on CPU

■ Ongoing activities are focusing on:
○ Increasing train dataset size with both real & synthetic data
○ Exploring alternative deep learning models, architectures, and implementations
○ Improving backbone pre-training (e.g. using self-supervised radio representations)
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            Survey of object detector frameworks

Semantic Segmentation with Tiramisu model
■ Uses semantic segmentation, a different approach than object 

detection, to achieve the same goal of source detection
■ Based on U-Net model
■ Comparable results with Mask R-CNN

DE:TR
■ Transformer model for object detection
■ Removes the necessity for RPN, typical of R-CNN based models
■ Heavier in terms of resources
■ Preliminary results in images below

For more details: R. Sortino et al, Experimental Astronomy (2023)
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            Radio source classifier
sclassifier: source classification tool

■ Implementation
○ python + TensorFlow v2
○ various 3rd party libraries: scutout, Montage, sklearn, …
○ MPI (for parallel inference on large maps)

■ Main features
○ Various methods for feature extraction/selection, image classification, 

outlier detection, etc 
✓ Supervised: CNN, LightGBM + other sklearn classifiers
✓ Self-supervised: SimCLR, BYOL
✓ Unsupervised/dim reduction: Conv. Autoencoders, UMAP, HDBSCAN

○ Trained & tested on different radio survey data

■ Various analysis ongoing 
○ Supervised compact source classification
○ Radio source morphology classification
○ Radio image classification
○ Radio data representation learning 

Known pulsar Known PN

Known HII region Known star

For more details: S. Riggi et al, (2023), submitted
https://github.com/SKA-INAF/sclassfiier

https://github.com/SKA-INAF/caesar-mrcnn
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            Compact source supervised classification
■ Goal: classify Galactic vs extragalactic objects

○ Dataset
✓ 20k compact source images from radio (FIRST, ASKAP, THOR, CORNISH, …) + 

infrared (WISE, HiGAL) surveys
✓ 7 classes: Radio Galaxy (RG), QSO, PN, HII, Pulsar, YSO, Radio Star

○ Method: 2 supervised classifiers used on 5-channel (radio+MIR) or 
7-channel (radio+MIR+FIR) images
✓ LightGBM: trained on pre-computed features: radio-infrared colors (+radio 

spectral indices)
✓ CNN: automatically extracting features from multi-chan images  

■ Classification results
○ LightGBM trees outperforming CNNs in performance
○ RGs, PNe, and HII regions best classified among classes
○ FIR and spectral index features improving classification

■ Major analysis limitations
○ Lack of homogeneous radio labelled data (e.g. different frequencies)
○ Limited number of training data for some Galactic classes (~hundreds) 
○ Few and dubious catalogued extragalactic objects in the GP
○ No full-sky coverage for discriminant surveys (e.g. 70 um) 

For more details: 
S. Riggi et al, (2023), submitted
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            Radio Data Representation with Self-Supervised Learning

Data Representation 
(Latent Space Features)

Source
Segmentation

Source morphology
classifier

Anomaly Detector

■ Limitations of supervised ML approaches
○ Requiring large labelled data sets (unfeasible human efforts)
○ Labels often poorly defined or varying across radio domains/communities
○ Unbalanced datasets (class and survey unbalance)

■ Self-supervised methods learn data representations without the need for labels
○ Representations & model can be used for various downstream tasks (supervised/unsupervised) 
○ Popular contrastive learning frameworks work by contrasting positive and negative augmented image views 

Data 
Inspection/Visualization

Clustering

Backbone 
Model

Fine-tuning model 

on labelled data

Image multi-label
classifier

Morphological tags
{background, point-like, double, triple, 
extended, extended-multisland, diffuse}

Source masks 
(+classification)

Anomaly score
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            Radio Data Representation with Self-Supervised Learning
■ Training SimCLR & BYOL on large unlabelled radio data

○ Dataset: ~250k (256x256, 128x128) images (ASKAP EMU, MeerKAT GPS)
✓ NB: Dataset size can be easily increased (no labels needed) 

○ Architectures: resnet18
✓ NB: Available GPUs prevent us to use deeper network and batch sizes >128-256

○ Pre-processing: 1 or 3-channels + stretching (sigma clip, hist eq., zscale) + resizing 
(224x224 or 128x128)

○ Augmentation: blur + (crop) + zscale contrast adjust + flip + rotate
○ Training times: 12-15 h/epoch on PLEIADI INAF-OACT infrastructure

■ Evaluating and fine-tuning model on different downstream tasks
○ UC 1 : Multi-label radio image classification (~11k labelled images)
○ UC 2: Radio morphology classification (~20.5k labelled images)
○ UC 3: Radio source segmentation (12.8k labelled images)

■ Preliminary results and lessons learnt
○ No improvement wrt ImageNet pre-training on UC 1 

✓ Compact sources dominates, too few extended sources
✓ Many objects, not “centred” in the cutouts (as in Radio Galaxy Zoo data)
✓ Batch size and trained epochs are too small
✓ Augmentation scheme to be improved

○ Need some smart selection of unlabelled radio data used for training
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            Synthetic Radio Image Generation

■ Goal: generate synthetic images & their segmentation masks to:
○ increase size of annotated dataset used for training object segmentation models
○ rebalance object classes in train datasets
○ create large radio maps for data challenge scopes

■ Methodology used
○ controllable (by multiple conditions) latent diffusion models

■ Computing resources used
○ GPU NVIDIA RTX 3090 24GB (UNICT), training taking few days per train experiment, ~seconds in inference

■ Preliminary results
○ Better metrics (FID, SSIM) on image conditional generation wrt state-of-the-art models (SPADE, INADE)
○ Improving existing model performances with synthetic data augmentation

Credits: Renato Sortino (PhD UNICT)
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            Galactic SNR Classification
■ Goal

○ Systematically study Galactic SNRs with 
unsupervised learning using 
multiwavelength maps (radio+IR) to find 
physically meaningful groups

■ Method
○ Autoencoder + DBSCAN clustering on 

UMAP dim-reduced data 

Credits: F. Bufano & C. Bordiu

Encoder
Convolution & Pooling layers

(Leaky ReLU)
[64:128:256]

Latent vector
[64x1]

Decoder
Convolution & Upsampling layers

(Leaky ReLU)
[256:128:64]

Output
[64x64x3]
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            Computing Resources
Local Resources Description Access Policy Performed Runs Notes

MUP-Cluster
@ OACT

Cores: 192
Mem/Core: 5.2 GB
Network: 1 Gbit Ethernet
Storage: 70 TB
GPUs: N.A.

Core/storage 90% reserved to CHIPP INAF 
projects through periodic calls.

CAESAR testing
Simulated library production

Now decommissioned

LOFAR IT
@ OACT

Cores: 128
Mem/Core: 6.4 GB
Network: 10 Gbit Ethernet
Storage: 40 TB
GPUs: 1 K40m (12 GB)

100% reserved for INAF LOFAR projects CAESAR parallel testing

PLEIADI
@ OACT

Cores: 2808
Mem/Core: 3.6 GB, 7.1 GB
Network: 100 Gbit omnipath
Storage: 170 TB
GPUs: 4 K40m (12 GB) + 2 V100 (16 GB)

100% reserved for INAF PLEIADI projects 
through periodic calls.

Self-supervised, object detector, 
source/image classification training & 
inference.

Radio Infra
@ OACT

Cores: 64  
Mem/Core: 8 GB, 10.7 GB
Network: 1 Gbit Ethernet
Storage: 55 TB 
GPUs: 1 RTX 6000 (24 GB)

100% reserved for radio OACT projects Self-supervised, object detector, 
source/image classification training & 
inference, SKA precursor data analysis

Enhancement foreseen with the PNRR STILES & 
KM3NET project.

■ Nice-to-have computing resources @ INAF
○ At least one dedicated high-memory GPUs (e.g. >24 GB)
○ At least ~50 TB additional dedicated storage
○ A non-HPC infrastructure (e.g. engineered for running containerized services), INAF-shared
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            Summary
■ Experiences & gained expertises

○ Exposure to various technologies during development
✓ Libraries for developing ML applications (e.g. TensorFlow, PyTorch, sklearn)
✓ Libraries for developing parallel applications (e.g. MPI C++/python, OpenMP)
✓ Libraries for developing image processing applications (e.g. OpenCV, skimage)
✓ Libraries for running containerized applications (e.g. Docker, Singularity, Kubernetes)
✓ Various ML models for different tasks: image classification, object segmentation, image generation, etc
✓ Libraries for data version control: dvc
✓ Libraries for astronomical data analysis (e.g. astropy, CASA, …)

○ Bridging the gap between IT & researcher local communities
✓ Researchers being exposed to ML technologies & methodologies
✓ People from AI world (PhD students) being exposed to astronomical data formats & analysis

■ Objectives achieved
○ Developed various tools  & curated dataset for radio source analysis 
○ Performances estimated on both simulated and real data from different SKA precursor surveys 
○ Parallel implementation provided for some of them to support runs on HPC infrastructures
○ Some of the tools already used to produce scientific results within ASKAP & MeerKAT GP teams

■ The road is still long …
○ More people & efforts needed in data preparation and science requirements definition
○ Ongoing studies focusing on algorithm improvements  
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