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Active Galactic Nuclei, powered by Supermassive Black Holes, can ;
solve the tension between the hierarchical structure growth and the
downsizingtrend. N | g
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The growth of Supermassive Black Holes and their host galaxy 158 g
seem to be intertwined, witnessing that BHs play a key role in :
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galaxy evolution :
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Zoom-in simulations of galaxy clusters belonging
to the DIANOGA set using the lagrangian
OpenGadget3 code (TreePM-SPH).
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Star formation rate (from stellar ages)

| art Ll How it all started
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e i- Y g o | @l Decaling with black holes in cosmological simulations
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Solve the dynamics of a collision less self-gravitating fluid by sampling the fluid with discrete tracer particles. The
evolution of the fluid is then obtained by integrating their equation of motion in the collective gravitational field.

Due to the sampling in mass, simulations cannot
be able to reproduce the dynamics of single
particles.
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The computation of the gravitational interactions is correct J (‘Ti — 7’} ‘ 2 4 ¢ 2) 1/2

only above the softening length. In cosmological simulations
it often relies on approximate methods.

One major obstacle is that becomes necessary to accurately follow the dynamics of one single object, the black hole, something that
simulations with force resolution larger than a few pc are inherently not well equipped to do.

Tremmel, Michael, et al. "Off the beaten path: a new approach to realistically model the orbital decay of supermassive black holes in galaxy formation simulations." Monthly
L Notices of the Royal Astronomical Society 451.2 (2015): 1868-1874.




The pairing phase is dominated by Stellar hardening and GW emission

The two galaxies merge dynamical friction drive the last stages

HST ima ge of NGC5331 Image credit: Columbia University Image credit: K. Thorne (Caltech) and T. Carnahan (NASA GSFC)
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Cosmological simulations




kpc

100

75

50

235

—25

=50

73

—100
—100

The recipe

Introducing dynamical friction: our new prescription

Add a correction to the gravitational interactions under the softening length to account for the unresolved dynamical
friction force.
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How it works

Every particle at a distance < hg adds
a contribution that depends on its
mass and its relative velocity.
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(N -1y &l | B} Comparing with other implementations: the pinning prescription
7=2.9537 The rectpe
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Re-position the black hole in the position of the
neighbour star particle having the minimum potential.
75
« The black holes are well centered into the hosting galaxies
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_ » The merger events are extremely fast
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rtIII Comparing with other implementations: the dynamical mass

The recipe

7z=2.9537 The black hole particles have a second artificial boosted
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mass which account for gravitational interactions.
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Improves the modelization of the merger event
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50 « Does not reproduce the loss of angular momentum
shrinking the orbits of the merging black holes
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Dynamical mass
—— McCornell&Ma 2013
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Dynamical friction

—— McCornell&Ma 2013
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The new implementation both centers the BHs
and is capable to describe the dynamics of the

merger event.
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Current and future perspectives

Pinning Dynamical mass  Dynamical friction

Higher resolution galaxy cluster simulations to investigate
the role of this new recipe on the AGN activity and galaxy
population.

Study of the effect of the merging histories on higher-
redshift protocluster regions.

Cosmological simulations to investigate the merger rate,
the black hole mass function and predictions for PTA, LISA.




Part I Not only physics

Running the code Data analysis

The new implementation does not require the On-going project: a GUI platform to study the role of
computation of the local potential of particles, SMBHs into the simulations including informations

neither requires SUBFIND running on the fly. As about mergers, BH growth, AGN feedback

a result, it slightly reduces the computational cost

of the simulations: 10
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