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1. The ESA Gaia Mission

15/06/23 Gaia spacecraft - ESA-D. Ducros (2013)

Gaia launch from Guyana Space Center–
ESA/CNES/Arianespace

Gaia AVU-GSR solver target:
Derivation of positions and proper motions of ~108 stars (primary
stars) in the Milky Way observed with the Gaia satellite, with a
[10,100] 𝜇as accuracy.
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1. The ESA Gaia Mission

The Gaia mission:
v Developed by: European Space Agency (ESA)
v Duration: Dec 19th 2013 – 2018 (extended so far to

2025-2030).
v Data Release 3: Published on June 13th 2022
v Objectives:

v Astrometry: map of the positions and the proper motions of the
stars in our galaxy

v Origin and evolution of the Milky Way
v Test of theories of gravity

v Website: https://sci.esa.int/web/gaia
15/06/23 Gaia spacecraft - ESA-D. Ducros (2013)

Gaia launch from Guyana Space Center–
ESA/CNES/Arianespace

Gaia AVU-GSR solver target:
Derivation of positions and proper motions of ~108 stars (primary
stars) in the Milky Way observed with the Gaia satellite, with a
[10,100] 𝜇as accuracy.
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2. The Gaia AVU-GSR parallel solver
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Becciani et al. (2014)

𝐀	×	𝒙 = 𝒃

Solution array: ~108 ×101 elements

Coefficient matrix:
v Large and sparse 

(Nobs × Nunk ≃ 
1011 × 108 elements)

v Computation with a dense 
matrix 𝐀𝐝
(~1011 × 101 elements) Known terms array:

~1011 ×101 elements

10-100 TB of 
memory:
Big Data 
problem
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𝐀	×	𝒙 = 𝒃

Solution array: ~108 ×101 elements

Coefficient matrix:
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𝒙𝟎 = 𝐀𝐓×𝒃

while 
(Convergence?)
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Reduction

𝒙𝒊 = 𝐀𝐓×𝒃𝒊

Reduction

𝒃𝒊 = 𝐀×𝒙𝒊$𝟏
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2.1 Computational problem

v The calculation requires a parallelization over many THIN-like nodes (256-512 GB of memory).

v Application dominated by computation and minimal MPI communications.

v Maximal occupancy of each node resources (between MPI processes and OpenMP threads).

v Mean iteration time: ~4 s 

v Typical number of iterations for convergence: ~150000
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Total iteration time:
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Non optimal for the future Gaia Data Releases.
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2.1 Computational problem

v The calculation requires a parallelization over many THIN-like nodes (256-512 GB of memory).

v Application dominated by computation and minimal MPI communications.

v Maximal occupancy of each node resources (between MPI processes and OpenMP threads).

v Mean iteration time: ~4 s 

v Typical number of iterations for convergence: ~150000

Total iteration time:
~1 week

Non optimal for the future Gaia Data Releases.

GPU porting of the code
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3. The OpenACC and CUDA porting

References:
Cesare V., et al., accepted for publication in the Publications of the Astronomical Society of the Pacific
Cesare V., et al., 2022b, INAF Technical Reports 164

Cesare, V. et al., 2022c, Astronomy and Computing, 41, 100660
Cesare V., et al., 2022a, INAF Technical Reports 163
Cesare V., et al., 2021, ASP Conference Series, in Proc. of ADASS XXXI, in press

CUDA

OpenACC
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3.1 Multi-GPU computation

v MPI processes assigned to the 
GPUs of the node in a round-
robin fashion.

v Optimal configuration: number 
of MPI processes per node = 
number of GPUs of the node.
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Coefficient matrix of the GPU-ported codes parallelized on 
4 nodes of a cluster.
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3.1 Multi-GPU computation

v MPI processes assigned to the 
GPUs of the node in a round-
robin fashion.

v Optimal configuration: number 
of MPI processes per node = 
number of GPUs of the node.

v Tests on CINECA supercomputer 
Marconi100, with 4 NVIDIA 
Volta V100 GPUs per node 
with 16 GB of memory each.

Coefficient matrix of the GPU-ported codes parallelized on 
4 nodes of a cluster.
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3.2.1 The algorithms – aprod 1

int main {
#pragma omp parallel
  #pragma omp for
  for i ← 0 to N[pid] do
    sum = 0.0
    // Astrometric part
    k = i x Npar
    for j ← 0 to NAstro do
      sum += 

Ad[k]x[j+offs[i]]
      k++
    ... [similar construct 

x3]
b[i] += sum

}

int main {
// Astrometric part
#pragma acc parallel
  #pragma acc loop
  for i ← 0 to N[pid] do
    sum = 0.0
    k = i x Npar
      for j ← 0 to NAstro do
      sum +=   

Ad[k+j]x[j+offs[i]]
    b[i] += sum
 ... [similar construct x3]
}

// Astrometric part
__global__ void
a1_Kernel_Astro
(…, Ad,dev,bdev,xdev,…)    
i=blockIdx.x*blockDim.x+threadIdx.x
  if (i < N[pid])
    sum = 0.0
    k = i x Npar
    for j ← 0 to NAstro do
      sum +=   

Ad,dev[k+j]xdev[j+offs[i]]
    bdev[i] += sum
... [similar kernels definitions x3]

int main {
a1_Kernel_Astro<<<gridDim, 

blockDim>>>(…, 
Ad,dev,bdev,xdev,…)

... [similar kernel calls x 3]
cudaDeviceSyncronyze()
}

OpenMP OpenACC CUDA

N. obs. per MPI proc.

N. param. ≠ 0 
per obs. = 24 

Kernel
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3.2.2 The algorithms – aprod 2

int main {
#pragma omp parallel
  tid = omp_get_thread_num()
  for i← Nt[tid][0] to 

Nt[tid][1] do 
    // Astrometric part
    k = i x Npar
      for j ← 0 to NAstro do
     x[j+offs[i]]+=Ad[k]b[i]
     k++
    ... [similar construct 

x3]
}

int main {
#pragma acc parallel
  #pragma acc loop
  for i ← 0 to N[pid] do
    // Astrometric part
    k = i x Npar
      for j ← 0 to NAstro do
     #pragma acc atomic
     x[j+offs[i]]+=Ad[k+j]b[i]
    ... [similar construct 

x3]
}

__global__ void
a2_Kernel_Astro
(…, Ad,dev,bdev,xdev,…)
i=blockIdx.x*blockDim.x+threadIdx.x
if (i < N[pid])
  k = i x Npar
  for j ← 0 to NAstro do
    atomicAdd(&x[j+offs[i]], 

Ad,dev[k+j]b[i])
... [similar kernels x3]

int main {
a2_Kernel_Astro<<<gridDim, 

blockDim,0,stream1>>>(…, 
Ad,dev,bdev,xdev,…)

... [similar kernel calls x3]
cudaDeviceSyncronyze()
}

OpenMP OpenACC CUDA
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3.3.1 Performance results – Part 1

v Calculation time dominated by GPU 
computation and not by data copies 
and CPU computation.

v The iteration time fraction due to GPU 
computation passed from ~70% 
(OpenACC) to >90% (CUDA)

v The iteration time fraction due to data 
copies + CPU computation passed 
from ~30% (OpenACC) to ~6% 
(CUDA).

(a)

(b)

OpenACC

CUDA

GPU region CPU region

H2D copyD2H copy

NVIDIA Nsight Systems (https://developer.nvidia.com/nsight-
systems) profiler output for a 50 GB run parallelized on 4 

MPI processes of 1 node of Marconi100.

Compute bound code
15/06/23
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v Speedup CUDA-over-OpenMP increasing with a more efficient utilization of the 
GPUs and with the system size.

v Speedup of ~14x for the largest system! And it is supposed to further increase.

3.3.2 Performance results – Part 2
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3.4 Numerical stability

Comparison between the solutions and their uncertainties found by the OpenMP and the CUDA codes for a set of different systems.

Example for a system that occupies 350 GB of memory:

350 GB

Solutions consistent within 1𝝈 Differences of the uncertainties 
consistent with zero

𝜎!"# − 𝜎$%&' =
4.0×10()* ± 8.1×10()+

𝑥!"# − 𝑥$%&'

𝜎!"#, + σ$%&',
< 1

𝑥!"# − 𝑥$%&' =
3.9×10(,, ± 2.2×10()-
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3.5 Numerical stability

Comparison between the solutions and their uncertainties found by the OpenMP and the CUDA codes for a set of different systems.

Example for a system that occupies 350 GB of memory:

350 GB

Solutions consistent within 1𝝈 Differences of the uncertainties 
consistent with zero

𝜎!"# − 𝜎$%&' =
4.0×10()* ± 8.1×10()+

𝑥!"# − 𝑥$%&'

𝜎!"#, + σ$%&',
< 1

𝑥!"# − 𝑥$%&' =
3.9×10(,, ± 2.2×10()-

CUDA-ported Gaia AVU-GSR code put in production on Marconi100 in Q2 2022.
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4. The covariances computation

Start

𝒙𝟎 = 𝐀𝐓×𝒃

while 
(Convergence?)

No

Yes

Reduction

𝒙𝒊 = 𝐀𝐓×𝒃𝒊

Reduction

𝒃𝒊 = 𝐀×𝒙𝒊$𝟏

Exit loop

End
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4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of 
memory: unresolvable problem on existing infrastructures from the memory and storage points 
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0 
to 𝑁!"# − 1.
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4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of 
memory: unresolvable problem on existing infrastructures from the memory and storage points 
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0 
to 𝑁!"# − 1.

Covariances calculation:
for i ← 0 to NCov do
  dkprod = factor*xGlob[index1]*xGlob[index2]
  coVariance[i] += dkprod
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4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of 
memory: unresolvable problem on existing infrastructures from the memory and storage points 
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0 
to 𝑁!"# − 1.

Problem: 
index% and index& are global indexes, whereas 𝑥 is a local array → All the MPI 

processes would have to know the entire array of the unknowns to evaluate 
𝑥'()*[index%] and 𝑥'()*[index&].  

Covariances calculation:
for i ← 0 to NCov do
  dkprod = factor*xGlob[index1]*xGlob[index2]
  coVariance[i] += dkprod
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Each MPI process broadcasts 𝑥 (~2*106 elements ~ 16 MB) to all the other MPI processes at every iteration:

The code already passes from ‘‘compute-bound’’ to ‘‘communication-bound’’ from 16 nodes onwards. ⇒ 
Severe loss of performance when the number of nodes, and, thus, of MPI communications, increases (the 
advantage due to the CUDA porting is completely lost).
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4.2 The MPI_Bcast strategy
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4.3 The I/O strategy
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Gaia AVU-GSR code, Program 1 Covariances code, Program 2
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for i ← 0 to itnCycle do

Reading phase

itnCycle = 1000 provides an optimal 
trade-off between writing performance 
and storage occupancy (~ 7 TB per cycle 
at the end of the Gaia mission).
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trade-off between writing performance 
and storage occupancy (~ 7 TB per cycle 
at the end of the Gaia mission).
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4.3 Preliminary performance results

v To exploit the maximum advantage from this method the time

itnCycle ∗ (𝑡&'() + 𝑡*+,)

in the Covariances code has to be smaller than

itnCycle ∗ 𝑡-.'/ + 𝑡0/1.'

in the Gaia AVU-GSR code.
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4.3 Preliminary performance results

v To exploit the maximum advantage from this method the time

itnCycle ∗ (𝑡&'() + 𝑡*+,)

in the Covariances code has to be smaller than

itnCycle ∗ 𝑡-.'/ + 𝑡0/1.'

in the Gaia AVU-GSR code.

vFine-tuning of different solutions are being explored to achieve this target.
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next cycle of files is generated and so to avoid storage problems. 



5. Conclusions and outlooks

v Porting of the Gaia AVU-GSR pipeline on CINECA platform Leonardo for 
an optimal production in perspective of future Gaia data releases. We 
expect an even better performance since Leonardo has:
v 4x GPU memory per node (4 A200 GPUs with 64 GB each per node on Leonardo vs 

4 V100 GPUs with 16 GB each per node on Marconi100);
v Leonardo GPUs with more streaming multiprocessors compared to Marconi100 GPUs. 
⇒ More concurrent threads.

v Targets of 2 years INAF Mini Grant (in collaboration with Prof. Marco 
Aldinucci of UniTO):
vStrong and weak scaling, numerical stability, and Green Computing studies up to 

system sizes of the final Gaia dataset (10-100 TB) (also targets of CN–Spoke 1–FL5);
vTests repeated to compare the CUDA code and a code version rewritten in C++, 

which allows GPU offloading and a greater code portability.
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EXTRA SLIDES
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A. Strong and weak scaling curves for the 
OpenMP and the OpenACC AVU-GSR codes
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