
The MPI+CUDA Gaia AVU–GSR Parallel Solver
towards next-generation Exascale Infrastructures

V. Cesare1, U. Becciani1, A. Vecchiato2, M. G. Lattanzi3, F. Pitari4, M. Raciti5, G. Tudisco6, M. Aldinucci7, B. Bucciarelli3
(1) INAF-OACT+ICSC; (2) INAF-OATO+ICSC; (3) INAF-OATO; (4) CINECA; (5) UniCT; (6) INAF-OACT; (7) UniTO+ICSC

INAF USC VIII-Calcolo Critico
June 15th 202315/06/23 1

Table of contents

1. The ESA Gaia Mission
2. The Gaia AVU-GSR parallel solver
3. The OpenACC and CUDA porting
4. The covariances computation
5. Conclusions and outlooks

15/06/23 2

1. The ESA Gaia Mission

15/06/23 Gaia spacecraft - ESA-D. Ducros (2013)

Gaia launch from Guyana Space Center–
ESA/CNES/Arianespace

Gaia AVU-GSR solver target:
Derivation of positions and proper motions of ~108 stars (primary
stars) in the Milky Way observed with the Gaia satellite, with a
[10,100] 𝜇as accuracy.

3

1. The ESA Gaia Mission

The Gaia mission:
v Developed by: European Space Agency (ESA)
v Duration: Dec 19th 2013 – 2018 (extended so far to

2025-2030).
v Data Release 3: Published on June 13th 2022
v Objectives:

v Astrometry: map of the positions and the proper motions of the
stars in our galaxy

v Origin and evolution of the Milky Way
v Test of theories of gravity

v Website: https://sci.esa.int/web/gaia
15/06/23 Gaia spacecraft - ESA-D. Ducros (2013)

Gaia launch from Guyana Space Center–
ESA/CNES/Arianespace

Gaia AVU-GSR solver target:
Derivation of positions and proper motions of ~108 stars (primary
stars) in the Milky Way observed with the Gaia satellite, with a
[10,100] 𝜇as accuracy.

4

https://sci.esa.int/web/gaia

2. The Gaia AVU-GSR parallel solver

15/06/23 5

Becciani et al. (2014)

𝐀	×	𝒙 = 𝒃

Solution array: ~108 ×101 elements

Coefficient matrix:
v Large and sparse

(Nobs × Nunk ≃
1011 × 108 elements)

v Computation with a dense
matrix 𝐀𝐝
(~1011 × 101 elements) Known terms array:

~1011 ×101 elements

10-100 TB of
memory:
Big Data
problem

15/06/23 6

Becciani et al. (2014)

𝐀	×	𝒙 = 𝒃

Solution array: ~108 ×101 elements

Coefficient matrix:
v Large and sparse

(Nobs × Nunk ≃
1011 × 108 elements)

v Computation with a dense
matrix 𝐀𝐝
(~1011 × 101 elements) Known terms array:

~1011 ×101 elements

10-100 TB of
memory:
Big Data
problem

{
{
{
{

Observations: MPI proc. 0

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: MPI proc. 1

Observations: MPI proc. 2

Observations: MPI proc. 3

Nobs ~1011

Nunk ~108

OpenMP
threads

PPN 𝛄

15/06/23 7

Becciani et al. (2014)

𝐀	×	𝒙 = 𝒃

Solution array: ~108 ×101 elements

Coefficient matrix:
v Large and sparse

(Nobs × Nunk ≃
1011 × 108 elements)

v Computation with a dense
matrix 𝐀𝐝
(~1011 × 101 elements) Known terms array:

~1011 ×101 elements

10-100 TB of
memory:
Big Data
problem

{
{
{
{

Observations: MPI proc. 0

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: MPI proc. 1

Observations: MPI proc. 2

Observations: MPI proc. 3

Nobs ~1011

Nunk ~108

OpenMP
threads

PPN 𝛄

Start

𝒙𝟎 = 𝐀𝐓×𝒃

while
(Convergence?)

No

Yes

Reduction

𝒙𝒊 = 𝐀𝐓×𝒃𝒊

Reduction

𝒃𝒊 = 𝐀×𝒙𝒊$𝟏

Exit loop

End

aprod 1

aprod 2

aprod 2

Variances and
Covariances computation

LS
Q

R
 a

lg
or

ith
m

> 90%
calculation

15/06/23 8

2.1 Computational problem

v The calculation requires a parallelization over many THIN-like nodes (256-512 GB of memory).

v Application dominated by computation and minimal MPI communications.

v Maximal occupancy of each node resources (between MPI processes and OpenMP threads).

v Mean iteration time: ~4 s

v Typical number of iterations for convergence: ~150000

15/06/23 9

2.1 Computational problem

v The calculation requires a parallelization over many THIN-like nodes (256-512 GB of memory).

v Application dominated by computation and minimal MPI communications.

v Maximal occupancy of each node resources (between MPI processes and OpenMP threads).

v Mean iteration time: ~4 s

v Typical number of iterations for convergence: ~150000

Total iteration time:
~1 week

Non optimal for the future Gaia Data Releases.

15/06/23 10

2.1 Computational problem

v The calculation requires a parallelization over many THIN-like nodes (256-512 GB of memory).

v Application dominated by computation and minimal MPI communications.

v Maximal occupancy of each node resources (between MPI processes and OpenMP threads).

v Mean iteration time: ~4 s

v Typical number of iterations for convergence: ~150000

Total iteration time:
~1 week

Non optimal for the future Gaia Data Releases.

GPU porting of the code
15/06/23 11

3. The OpenACC and CUDA porting

References:
Cesare V., et al., accepted for publication in the Publications of the Astronomical Society of the Pacific
Cesare V., et al., 2022b, INAF Technical Reports 164

Cesare, V. et al., 2022c, Astronomy and Computing, 41, 100660
Cesare V., et al., 2022a, INAF Technical Reports 163
Cesare V., et al., 2021, ASP Conference Series, in Proc. of ADASS XXXI, in press

CUDA

OpenACC

15/06/23 12

15/06/23

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

Observations: node 1

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: node 2

Observations: node 3

Observations: node 4

GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3

3.1 Multi-GPU computation

v MPI processes assigned to the
GPUs of the node in a round-
robin fashion.

v Optimal configuration: number
of MPI processes per node =
number of GPUs of the node.

13

Coefficient matrix of the GPU-ported codes parallelized on
4 nodes of a cluster.

15/06/23

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

MPI proc. 0
MPI proc. 1
MPI proc. 2
MPI proc. 3

Observations: node 1

G
l
o
b
a
l

Astrometric Attitude Instrument

Observations: node 2

Observations: node 3

Observations: node 4

GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3
GPU 0
GPU 1
GPU 2
GPU 3

3.1 Multi-GPU computation

v MPI processes assigned to the
GPUs of the node in a round-
robin fashion.

v Optimal configuration: number
of MPI processes per node =
number of GPUs of the node.

v Tests on CINECA supercomputer
Marconi100, with 4 NVIDIA
Volta V100 GPUs per node
with 16 GB of memory each.

Coefficient matrix of the GPU-ported codes parallelized on
4 nodes of a cluster.

14

3.2.1 The algorithms – aprod 1

int main {
#pragma omp parallel
 #pragma omp for
 for i ← 0 to N[pid] do
 sum = 0.0
 // Astrometric part
 k = i x Npar
 for j ← 0 to NAstro do
 sum +=

Ad[k]x[j+offs[i]]
 k++
 ... [similar construct

x3]
b[i] += sum

}

int main {
// Astrometric part
#pragma acc parallel
 #pragma acc loop
 for i ← 0 to N[pid] do
 sum = 0.0
 k = i x Npar
 for j ← 0 to NAstro do
 sum +=

Ad[k+j]x[j+offs[i]]
 b[i] += sum
 ... [similar construct x3]
}

// Astrometric part
__global__ void
a1_Kernel_Astro
(…, Ad,dev,bdev,xdev,…)
i=blockIdx.x*blockDim.x+threadIdx.x
 if (i < N[pid])
 sum = 0.0
 k = i x Npar
 for j ← 0 to NAstro do
 sum +=

Ad,dev[k+j]xdev[j+offs[i]]
 bdev[i] += sum
... [similar kernels definitions x3]

int main {
a1_Kernel_Astro<<<gridDim,

blockDim>>>(…,
Ad,dev,bdev,xdev,…)

... [similar kernel calls x 3]
cudaDeviceSyncronyze()
}

OpenMP OpenACC CUDA

N. obs. per MPI proc.

N. param. ≠ 0
per obs. = 24

Kernel

15/06/23 15

N. Astrometric
param. ≠ 0
per obs. ≤ 5

3.2.2 The algorithms – aprod 2

int main {
#pragma omp parallel
 tid = omp_get_thread_num()
 for i← Nt[tid][0] to

Nt[tid][1] do
 // Astrometric part
 k = i x Npar
 for j ← 0 to NAstro do
 x[j+offs[i]]+=Ad[k]b[i]
 k++
 ... [similar construct

x3]
}

int main {
#pragma acc parallel
 #pragma acc loop
 for i ← 0 to N[pid] do
 // Astrometric part
 k = i x Npar
 for j ← 0 to NAstro do
 #pragma acc atomic
 x[j+offs[i]]+=Ad[k+j]b[i]
 ... [similar construct

x3]
}

__global__ void
a2_Kernel_Astro
(…, Ad,dev,bdev,xdev,…)
i=blockIdx.x*blockDim.x+threadIdx.x
if (i < N[pid])
 k = i x Npar
 for j ← 0 to NAstro do
 atomicAdd(&x[j+offs[i]],

Ad,dev[k+j]b[i])
... [similar kernels x3]

int main {
a2_Kernel_Astro<<<gridDim,

blockDim,0,stream1>>>(…,
Ad,dev,bdev,xdev,…)

... [similar kernel calls x3]
cudaDeviceSyncronyze()
}

OpenMP OpenACC CUDA

15/06/23 16

ID of the OpenMP thread

3.3.1 Performance results – Part 1

v Calculation time dominated by GPU
computation and not by data copies
and CPU computation.

v The iteration time fraction due to GPU
computation passed from ~70%
(OpenACC) to >90% (CUDA)

v The iteration time fraction due to data
copies + CPU computation passed
from ~30% (OpenACC) to ~6%
(CUDA).

(a)

(b)

OpenACC

CUDA

GPU region CPU region

H2D copyD2H copy

NVIDIA Nsight Systems (https://developer.nvidia.com/nsight-
systems) profiler output for a 50 GB run parallelized on 4

MPI processes of 1 node of Marconi100.

Compute bound code
15/06/23

17

v Speedup CUDA-over-OpenMP increasing with a more efficient utilization of the
GPUs and with the system size.

v Speedup of ~14x for the largest system! And it is supposed to further increase.

3.3.2 Performance results – Part 2

●

●

●

●

50 100 150 200 250 300 350
0

2

4

6

8

10

12

14

Memory [GB]

S
pe
ed
up

4	GPUs
32	cores

8	GPUs
32	cores

24	GPUs
64	cores

SPEEDUP: ~14x

From ~4 s per
iteration (OpenMP) to
~0.3 s per iteration

(CUDA).

15/06/23 18

3.4 Numerical stability

Comparison between the solutions and their uncertainties found by the OpenMP and the CUDA codes for a set of different systems.

Example for a system that occupies 350 GB of memory:

350 GB

Solutions consistent within 1𝝈 Differences of the uncertainties
consistent with zero

𝜎!"# − 𝜎$%&' =
4.0×10()* ± 8.1×10()+

𝑥!"# − 𝑥$%&'

𝜎!"#, + σ$%&',
< 1

𝑥!"# − 𝑥$%&' =
3.9×10(,, ± 2.2×10()-

15/06/23 19

3.5 Numerical stability

Comparison between the solutions and their uncertainties found by the OpenMP and the CUDA codes for a set of different systems.

Example for a system that occupies 350 GB of memory:

350 GB

Solutions consistent within 1𝝈 Differences of the uncertainties
consistent with zero

𝜎!"# − 𝜎$%&' =
4.0×10()* ± 8.1×10()+

𝑥!"# − 𝑥$%&'

𝜎!"#, + σ$%&',
< 1

𝑥!"# − 𝑥$%&' =
3.9×10(,, ± 2.2×10()-

CUDA-ported Gaia AVU-GSR code put in production on Marconi100 in Q2 2022.

15/06/23 20

4. The covariances computation

Start

𝒙𝟎 = 𝐀𝐓×𝒃

while
(Convergence?)

No

Yes

Reduction

𝒙𝒊 = 𝐀𝐓×𝒃𝒊

Reduction

𝒃𝒊 = 𝐀×𝒙𝒊$𝟏

Exit loop

End

aprod 1

aprod 2

aprod 2

Variances and
Covariances computation

LS
Q

R
 a

lg
or

ith
m

15/06/23 21

4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of
memory: unresolvable problem on existing infrastructures from the memory and storage points
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0
to 𝑁!"# − 1.

15/06/23 22

4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of
memory: unresolvable problem on existing infrastructures from the memory and storage points
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0
to 𝑁!"# − 1.

Covariances calculation:
for i ← 0 to NCov do
 dkprod = factor*xGlob[index1]*xGlob[index2]
 coVariance[i] += dkprod

15/06/23 23

4.1 Computational problem

v Covariances calculation in the Gaia AVU-GSR code cannot be faced with standard approaches.

v The total number of covariances is ~𝑁!"#$ /2. With 𝑁!"#~5 ∗ 10% they would occupy ~1EB of
memory: unresolvable problem on existing infrastructures from the memory and storage points
of view → Only compute a subset of total covariances.

v Generate couples of covariances indexes, index1 and index2, where each index goes from 0
to 𝑁!"# − 1.

Problem:
index% and index& are global indexes, whereas 𝑥 is a local array → All the MPI

processes would have to know the entire array of the unknowns to evaluate
𝑥'()*[index%] and 𝑥'()*[index&].

Covariances calculation:
for i ← 0 to NCov do
 dkprod = factor*xGlob[index1]*xGlob[index2]
 coVariance[i] += dkprod

15/06/23 24

Each MPI process broadcasts 𝑥 (~2*106 elements ~ 16 MB) to all the other MPI processes at every iteration:

The code already passes from ‘‘compute-bound’’ to ‘‘communication-bound’’ from 16 nodes onwards. ⇒
Severe loss of performance when the number of nodes, and, thus, of MPI communications, increases (the
advantage due to the CUDA porting is completely lost).

●●●●●

● ●

●

●

●

0 50 100 150 200 250
0

10

20

30

40

50

60

Number of nodes

t[
s]

MPI_Bcast Cov. Implementation

4.2 The MPI_Bcast strategy

15/06/23

25

4.3 The I/O strategy

15/06/23 26

Gaia AVU-GSR code, Program 1 Covariances code, Program 2

PE = 0 PE = 1 PE = nproc - 1…

Output directory

itn 0𝑥"#$

Print

~2*106
elements
~ 16 MB

itn 1
while (Files
present?)

No

Delete the files in the output directory
for the correspondent cycle

while (All the cycles
are read, computed

and deleted?)

Exit loop

itn 0

Covariances computation

Yes

sleep(30)
Check if the files are present

in the output directory

Yes

No

Simultaneous
start

itn 2

…

itn itnCycle

for i ← 0 to itnCycle do

Reading phase

itnCycle = 1000 provides an optimal
trade-off between writing performance
and storage occupancy (~ 7 TB per cycle
at the end of the Gaia mission).

15/06/23
27

Covariances code, Program 2Gaia AVU-GSR code, Program 1

PE = 0 PE = 1 PE = nproc - 1…

Output directory

itn 0

𝑥"#$

~2*106
elements
~ 16 MB

itn 1

itn 2

Print

while (Files
present?)

No

Delete the files in the output directory
for the correspondent cycle

while (All the cycles
are read, computed

and deleted?)

Exit loop

Covariances computation

Yes

sleep(30)
Check if the files are present

in the output directory

Yes

No

itn 1

…

itn itnCycle

for i ← 0 to itnCycle do

Reading phase

Simultaneous
start

15/06/23
28

itnCycle = 1000 provides an optimal
trade-off between writing performance
and storage occupancy (~ 7 TB per cycle
at the end of the Gaia mission).

Covariances code, Program 2Gaia AVU-GSR code, Program 1

PE = 0 PE = 1 PE = nproc - 1…

Output directory

itn 0

~2*106
elements
~ 16 MB

itn 1

Print

while (Files
present?)

No

Delete the files in the output directory
for the correspondent cycle

while (All the cycles
are read, computed

and deleted?)

Exit loop

Covariances computation

Yes

sleep(30)
Check if the files are present

in the output directory

Yes

No

itn 2

Simultaneous
start

Reading phase

for i ← 0 to itnCycle do

𝑥"#$ itn 2

…

itn itnCycle

15/06/23
29

itnCycle = 1000 provides an optimal
trade-off between writing performance
and storage occupancy (~ 7 TB per cycle
at the end of the Gaia mission).

Covariances code, Program 2Gaia AVU-GSR code, Program 1

PE = 0 PE = 1 PE = nproc - 1…

Output directory

itn 0

~2*106
elements
~ 16 MB

itn 1

Print

while (Files
present?)

No

Delete the files in the output directory
for the correspondent cycle

while (All the cycles
are read, computed

and deleted?)

Exit loop

Covariances computation

Yes

sleep(30)
Check if the files are present

in the output directory

Yes

No

Simultaneous
start

for i ← 0 to itnCycle do

itn 2

…

itn itnCycle

𝑥"#$ itn itnCycle

Reading phase

15/06/23
30

itnCycle = 1000 provides an optimal
trade-off between writing performance
and storage occupancy (~ 7 TB per cycle
at the end of the Gaia mission).

4.3 Preliminary performance results

v To exploit the maximum advantage from this method the time

itnCycle ∗ (𝑡&'() + 𝑡*+,)

in the Covariances code has to be smaller than

itnCycle ∗ 𝑡-.'/ + 𝑡0/1.'

in the Gaia AVU-GSR code.

15/06/23 31

4.3 Preliminary performance results

v To exploit the maximum advantage from this method the time

itnCycle ∗ (𝑡&'() + 𝑡*+,)

in the Covariances code has to be smaller than

itnCycle ∗ 𝑡-.'/ + 𝑡0/1.'

in the Gaia AVU-GSR code. This allows to delete the files related to a certain cycle before the
next cycle of files is generated and so to avoid storage problems.

15/06/23 32

4.3 Preliminary performance results

v To exploit the maximum advantage from this method the time

itnCycle ∗ (𝑡&'() + 𝑡*+,)

in the Covariances code has to be smaller than

itnCycle ∗ 𝑡-.'/ + 𝑡0/1.'

in the Gaia AVU-GSR code.

vFine-tuning of different solutions are being explored to achieve this target.

15/06/23 33

This allows to delete the files related to a certain cycle before the
next cycle of files is generated and so to avoid storage problems.

5. Conclusions and outlooks

v Porting of the Gaia AVU-GSR pipeline on CINECA platform Leonardo for
an optimal production in perspective of future Gaia data releases. We
expect an even better performance since Leonardo has:
v 4x GPU memory per node (4 A200 GPUs with 64 GB each per node on Leonardo vs

4 V100 GPUs with 16 GB each per node on Marconi100);
v Leonardo GPUs with more streaming multiprocessors compared to Marconi100 GPUs.
⇒ More concurrent threads.

v Targets of 2 years INAF Mini Grant (in collaboration with Prof. Marco
Aldinucci of UniTO):
vStrong and weak scaling, numerical stability, and Green Computing studies up to

system sizes of the final Gaia dataset (10-100 TB) (also targets of CN–Spoke 1–FL5);
vTests repeated to compare the CUDA code and a code version rewritten in C++,

which allows GPU offloading and a greater code portability.

15/06/23 34

5. Conclusions and outlooks

v Porting of the Gaia AVU-GSR pipeline on CINECA platform Leonardo for
an optimal production in perspective of future Gaia data releases. We
expect an even better performance since Leonardo has:
v 4x GPU memory per node (4 A200 GPUs with 64 GB each per node on Leonardo vs

4 V100 GPUs with 16 GB each per node on Marconi100);
v Leonardo GPUs with more streaming multiprocessors compared to Marconi100 GPUs.
⇒ More concurrent threads.

v Targets of 2 years INAF Mini Grant (in collaboration with Prof. Marco
Aldinucci of UniTO):
vStrong and weak scaling, numerical stability, and Green Computing studies up to

system sizes of the final Gaia dataset (10-100 TB) (also targets of CN–Spoke 1–FL5);
vTests repeated to compare the CUDA code and a code version rewritten in C++,

which allows GPU offloading and a greater code portability.

15/06/23 35

J

15/06/23 36

Thank you for the
attention!!! J

J

15/06/23 37

EXTRA SLIDES

15/06/23 38

A. Strong and weak scaling curves for the
OpenMP and the OpenACC AVU-GSR codes

39

Strong scaling
– Intra node

Strong scaling
– Inter nodes

Weak scaling
– Inter nodes

Strong scaling
– Inter nodes

Cesare et al. (2022c)15/06/23

