





**INAF USCVIII - Calcolo Critico** 15–16 Jun 2023

F. Incardona, A. Costa, K. Munari, P. G. Bruno, S. Germani

## **Cherenkov Telescope Array**



More than **100** telescopes deployed at the **2** hemispheres of Earth



- Large-Sized Telescope (LST): ~23 m; ~50 tonnes; ~20 sec for repositioning
- **Medium-Sized Telescope** (MST): ~12 m; "workhorse" of CTA with sensitivity in its core energy range
- **Small-Sized Telescope** (SST): ~4 m; sensitive to the highest energies

CTA N + CTA S = **CTA Observatory** (CTAO): the first ground-based gamma-ray *proposal-driven* observatory open to the *worldwide* astronomical and particle physics communities

# **Monitoring System (MON)**





- Large throughput
- Scalability
- Partition tolerance
- Availability



# **Monitoring Data as Big Data**



Expected ~200.000 monitoring points sampled at a maximum rate of 5 Hz for a maximum throughput of ~1.26 Gbps, including logging

-> Volume and Velocity

Different data sources collected via different protocols

-> Variety

Provide a **solid framework** for identifying **measurement systematics** and **maintenance issues** -> Value and Veracity BIG DATA

# **Goal Achieved: LST Integration**









Collected values are written to a dedicated **Kafka topic** that is spread across *partitions* and *replicated* on different queue systems (**Kafka brokers**)





Collected values are written to a dedicated **Kafka topic** that is spread across *partitions* and *replicated* on different queue systems (**Kafka brokers**)





Collected values are written to a dedicated **Kafka topic** that is spread across *partitions* and *replicated* on different queue systems (**Kafka brokers**)





### **Storage Architecture**

| PartitionKey                             |                                                                |                                                        |                                             |                                              |                                            |
|------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------|----------------------------------------------|--------------------------------------------|
| <assembly>:<br/><name></name></assembly> | <pre><server_timestamp>:serial_number</server_timestamp></pre> | <server_timestamp>:source_timestamp</server_timestamp> | <server_timestamp>:units</server_timestamp> | <server_timestamp>:env_id</server_timestamp> | <server_timestamp>:data</server_timestamp> |
|                                          | <serial_number></serial_number>                                | <source_timestamp></source_timestamp>                  | <units></units>                             | <env_id></env_id>                            | <data></data>                              |

|                                                    | Sensor #      | Date       | Timestamp       | Metric 1                                         | Metric 2 | Metric 3 |  |
|----------------------------------------------------|---------------|------------|-----------------|--------------------------------------------------|----------|----------|--|
|                                                    | 1             | 2021-01-01 | 20210101-000000 | 4.01                                             | 4.67     | 0.784    |  |
| Node 1                                             | 1             | 2021-01-01 | 20210101-000010 | 4.03                                             | 4.67     | 0.785    |  |
|                                                    | 1             | 2021-01-01 | 20210101-000020 | 4.05                                             | 4.68     | 0.786    |  |
|                                                    | 1             | 2021-01-02 | 20210102-000000 | 4.02                                             | 4.67     | 0.784    |  |
|                                                    | 1             | 2021-01-02 | 20210102-000010 | 4.01                                             | 4.66     | 0.785    |  |
|                                                    | 1             | 2021-01-02 | 20210102-000020 | 4.07                                             | 4.67     | 0.786    |  |
| Node 2                                             | 2             | 2021-01-02 | 20210102-000000 | 4.00                                             | 4.66     | 0.784    |  |
|                                                    | 2             | 2021-01-02 | 20210102-000010 | 4.09                                             | 4.69     | 0.785    |  |
|                                                    | 2             | 2021-01-02 | 20210102-000020 | 4.01                                             | 4.67     | 0.786    |  |
|                                                    | Partition Key |            | Clustering Key  | Compound    Clustering<br>  Partition Key    Key |          |          |  |
| Primary Key PRIMARY KEY ((Sensor, Date), Timestamp |               |            |                 |                                                  |          |          |  |

Read and write operations are performed using a primary key on a **Cassandra table**.

The **partition key** defines a unique set of rows that is managed within a node of the cluster.



Rendering credit: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO

#### **MONITORING** CTAO-S Baseline Configuration

- **LST: 4**
- **MST: 25** 99 telescopes
- **SST: 70**

616 monitoring points per single telescope

Both Queue and Storage require large I/O throughput

Assuming 16 CPU cores per node:

- 6 nodes for the Queue
- 6 nodes for the Storage
- 1 node for the Schema Registry
- 1 node for the Logging Aggregator

14 nodes and 224 cores







#### **ALARM** CTAO-S Baseline Configuration

- LST: 4
- MST: 25 99 telescopes
- SST: 70 \_

220 monitoring points per single telescope

• Both Queue and Storage require large I/O throughput

Assuming 16 CPU cores per node:

- 3 nodes for the Queue
- 1 node for the Storage
- 1 node for the Integrated Alarm System (IAS)

Rendering credit: Gabriel Pérez Diaz, IAC / Marc-André Besel, CTAO



5 nodes and 80 cores





### Thanks for your attention

### **Storage Architecture**







Rendering credit: Gabriel Pérez Diaz IA(

#### MONITORING CTAO-N Baseline Configuration

- LST: 4
- MST: 15 19 telescopes
- SST: 0 \_

181 monitoring points per single telescope



• Both Queue and Storage require large I/O throughput

Assuming 16 CPU cores per node:

- 1 node for the Queue
- 1 node for the Storage
- 1 node for the Schema Registry
- 1 node for the Logging Aggregator

4 nodes and 64 cores



Rendering credit: Gabriel Pérez Diaz, IAC

#### ALARM CTAO-N Baseline Configuration

- LST: 4 —
- MST: 15 19 telescopes
- SST: 0 \_

65 alarm points per single telescope

- Both Queue and Storage require large I/O throughput

Assuming 16 CPU cores per node:

- 1 node for the Queue
- 1 node for the Storage
- 1 node for the Integrated Alarm System (IAS)

- 3 nodes and 48 cores