## **Cosmological Utility Codes** Prospects on optimisation and transition towards deep learning

Paolo Campeti (Tecnologo @ INFN Sezione di Ferrara) with Martina Gerbino, Massimiliano Lattanzi June 14th, 2023 - Spoke 3 General Meeting in Catania

## **Traditional Cosmological Inference Machinery** It's likelihood-based

Model *M* with  
parameters  
$$\theta = \{\theta_1, \theta_2 \dots \}$$
  $\longrightarrow$  Theoretically  
observ  
(e.g. power



In both Bayesian (MCMC) and frequentist (profile likelihood) frameworks

## **Traditional Cosmological Inference Machinery** It's likelihood-based

Model 
$$M$$
 with  
parameters  
 $\theta = \{\theta_1, \theta_2 \dots \}$   $\longrightarrow$  Theoretically  
observ  
(e.g. power



# Issues with the traditional approach

- 1. Curse of dimensionality:
  - Even for moderate number of nuisance parameters MCMC or profile likelihood require  $> \mathcal{O}(10^{5-6})$  likelihood evaluations to converge (~weeks/ months!)
  - -Must be addressed for future surveys (LiteBIRD, Euclid...) with many nuisance parameters!
- 2. **Bayesian model comparison** extremely intensive or even impossible! Fundamental scientific target for future surveys!
- 3. Can be hard to formulate an **analytical description** of the data in a **likelihood** (e.g. residual non-Gaussian contamination in CMB maps from systematics)



# Issues with the traditional approach...

1. Curse of dimensionality

2. Bayesian model comparison

3. Can be hard to formulate an analytical description of the data in a likelihood

### ...and possible solutions...

1.Neural-Net-based Emulators (e.g. power spectrum), GPU porting of likelihoods and Boltzmann codes

2. Simulation-based inference with NN

3. Simulation-based inference e.g. CNN



## **Emulators for Boltzmann codes** Neural-net-based

- Power spectrum evaluation via Boltzmann codes is the main bottleneck in likelihood computation
- Use NN to map directly cosmological params to power spectra
- Implemented in e.g. COSMOPOWER code (Spurio Mancini+2021) both matter and CMB angular power spectra
- *O*(10<sup>4</sup>) acceleration compared to Boltzmann codes!!!
- Training can be done in parallel
- Implement also for higher order correlations (bispectrum etc.), interpretability



 $\mathbf{w} = \{\mathbf{W}_1, \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_n, \mathbf{b}_n\}$ 

Figure from Spurio Mancini+2021





# GPU porting of likelihoods and Boltzmann codes

### Likelihood codes

- Theory power spectrum computation isn't the only bottleneck
- Other numerical operations and loops inside the likelihood (e.g. bin cross-correlations) can be expensive
- Rewrite likelihoods in TENSORFLOW to exploit GPU parallelisation

In general, optimize simulation/ inference pipelines (e.g. for LiteBIRD)

### **Boltzmann codes**

- NN emulators require re-training for each cosmological model being compared to data (e.g. beyond  $\Lambda CDM$  models)
- Re-training can be expensive
- Porting Boltzmann codes like CAMB or CLASS to GPU





### **Comparing cosmological models** requires computation the Bayesian Model Evidence:



- traditional sampling is typically unfeasible
- *Delaunoy+2022, Cole+2022, Spurio Mancini+2022, Vasist+2023*)
- pairs of prior samples and simulations  $\{\theta_i, d_i\}_{i=1}^N$ , accurate for  $N \to \infty$

$$z = p(d | M) = \int p(d | \theta, M) p(\theta | M) d\theta$$

• Extremely expensive multi-dimensional integral even in moderate parameter space:

Solution: simulation-based inference, in particular neural density estimation (e.g.

- Ideal case of use of deep neural nets: train estimator  $q_{\phi}$  parametrized by weights  $\phi$  to approximate target prob density (e.g. posterior, likelihood...) from a training set of N



## Another application of Simulation-Based Inference useful when modelling analytically data in a likelihood is hard

- E.g. residual non-Gaussian contamination in Planck polarization maps affecting cosmological parameters determination
- estimate cosmo parameters directly at map level using Convolutional NN (e.g. Wolz, Krachmalnicoff & Pagano 2023)
- SBI also useful when it is difficult to define the optimal summary statistic
- Reduction of data to summary statistic loses information



# Our program

- Develop new and better tools and/or extend scope of existing tools for efficient cosmological inference, such as:
  - Faster and more efficient power spectrum computation:
    - Via NN-based emulators



- Via GPU porting of Boltzmann codes WP 1 & 2
- Faster and more efficient likelihood codes via GPU porting WP 1 & 2
- NN-based tools for model comparison and parameter estimation **WP** 3
- Develop tools and/or optimize **pipelines** for INFN-funded experiments (e.g. LiteBIRD, Euclid) WP1&2
- Synergic experiments starting now (e.g. Simons observatory) will also benefit from our timely studies and provide ideal & immediate test-bed for development and tuning of our tools!

#### **WP** 3

