Cosmology with galaxy clustering

A pipeline for the joint analysis of the power spectrum and bispectrum

Chiara Moretti

ISTITUTO NAZIONALE DI ASTROFISICA OSSERVATORIO ASTRONOMICO DI TRIESTE

Motivation

Stage IV galaxy redshift surveys

 \rightarrow unprecedented volume, high precision measurements

Neutrino mass? Modified gravity? Tensions?

Full data exploitation:

- Nonlinear regime
- Higher order statistics

Accurate and fast theoretical model + likelihood pipeline

Galaxy clustering

Homogeneous distribution of overdensities

gravity

clustered distribution of galaxies Galaxy distribution ↔ cosmological model

Correlate overdensity δ in different cells $\xi(r) = \langle \delta_R(\mathbf{x}) \delta_R(\mathbf{x} + \mathbf{r}) \rangle$ $P(k_1) \delta_D(\mathbf{k_1} + \mathbf{k_2}) = \langle \delta_{\mathbf{k_1}} \delta_{\mathbf{k_2}} \rangle$

Chiara Moretti

The code: PBJ Power spectrum & Bispectrum Joint analysis

- Linear P(k) with CAMB or Bacco/Cosmopower emulator
- EFTofLSS P(k) (with Fast-PT for fast evaluation 30 ms)
- Tree-level bispectrum (0.1 s)
- 1-loop galaxy bias
- Customized IR-resummation routine (w-nw split)
- samplers: emcee (affine invariant & Metropolis-Hastings), Multinest (nested sampling), pocomc (preconditioned Monte Carlo)
- Likelihood: Gaussian + corrections for noise in the covariance

BOSS analysis

- BOSS DR12 power spectrum multipoles
- Full shape analysis with EFTofLSS + BAO data
- γ+massive neutrinos

Stage IV forecasts

- Synthetic data, different galaxy samples → forecast future constraints
- Optimistic / pessimistic settings
- Optimal choice of priors

Euclid

Modelling challenge:

fit large, high-res Euclid-like simulation; Comparison with several independent codes

Model from PBJ ported in official likelihood pipeline

Beyond-ACDM:

Testing nonlinear models for massive neutrinos, evolving DE, modified gravity...

Summary

- Stage IV surveys can constrain the cosmological model to % precision
 - Extract all information with nonlinear scales, higher order statistics
 - Validity of the model to avoid "fake tensions"
- **PBJ**: a joint likelihood pipeline for power spectrum + bispectrum
 - Highly efficient, validated with large simulation set
- Applied to BOSS data for beyond-ACDM models
 - Priors on nuisance parameters matter
 - Strong degeneracies \rightarrow bispectrum can help
- Euclid:
 - PBJ ported to official likelihood CLOE
 - Currently used to assess validity of the model (ACDM and beyond)

Chiara Moretti

Cosmological parameters

- Small errorbars \rightarrow stress-test the model
- Reduce the parameter space
- Find k_{max}
- Improved constraining power when including bispectrum

Finding k_{max}

Bispectrum – AP effect

Alcock-Paczynski: expansion around $\alpha_{\parallel} \approx 1$ and $\alpha_{\perp} \approx 1$:

$$B_{\ell}(k_{1},k_{2},k_{3}) = \frac{2\ell+1}{\alpha_{\perp}^{4}\alpha_{\parallel}^{2}} \sum_{n_{1},n_{2}} \int_{-1}^{1} \frac{\mathrm{d}\mu_{1}}{2} \int_{0}^{2\pi} \frac{\mathrm{d}\varphi}{2\pi} \mathcal{L}_{\ell}(\mu_{1}) \mu_{1}^{n_{1}} \mu_{2}^{n_{2}} B_{n_{1},n_{2}}(k_{1},k_{2},k_{3}) \times \left\{ 1 + \left[n_{1}(\mu_{1}^{2}-1) + n_{2}(\mu_{2}^{2}-1) \right] (F-1) + \sum_{i=1}^{3} \left[1 - \alpha_{\perp} + (\alpha_{\perp} - \alpha_{\parallel}) \mu_{i}^{2} \right] \frac{\partial \ln B_{n_{1},n_{2}}}{\partial \ln k_{i}}(k_{1},k_{2},k_{3}) \right\}$$

 \rightarrow we can factor out the dependence on $\alpha_{\parallel},\alpha_{\perp}$ and treat them as bias parameters

Perturbation theory -- EFT

- Basics of EFTofLSS: [Baumann et al. 2010, Carrasco et al. 2012, de la Bella et al. 2017]
- Split density into long and short modes at some scale $\land < k_{\text{NL}}$: $\delta = \delta_{\Lambda} + \delta_{\text{NL}}$
- Renormalise the fields δ_{Λ} to take into account dependence on δ_{NL} in a general way:

$$\delta^R = \delta_{\Lambda} + c_{2|\delta}(a) \frac{\partial^2 \delta_{\Lambda}}{k_{\rm NL}^2} + \mathcal{O}\left(\frac{\partial^2}{k_{\rm NL}^4}\right)$$

- Get n-point functions with counter-terms: $P^{EFT}(k,\mu,z) = P^{1-loop}(k,\mu,z) - 2c_{ctr}(z) \ k^2 \ P_L(k,z) + \mathcal{O}(k^4 \ P_L)$
- Need unknown functions of time, $c_{ctr}(z)$, but known scale-dependence