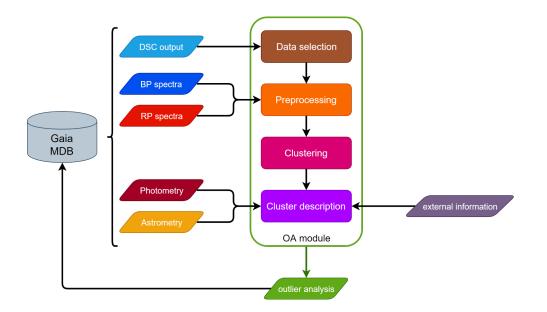


A scientific guide to Gaia Astrophysical Parameters

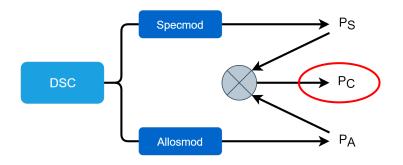
Day 3

organized by Coordination Unit 8

Outlier Analysis (OA)

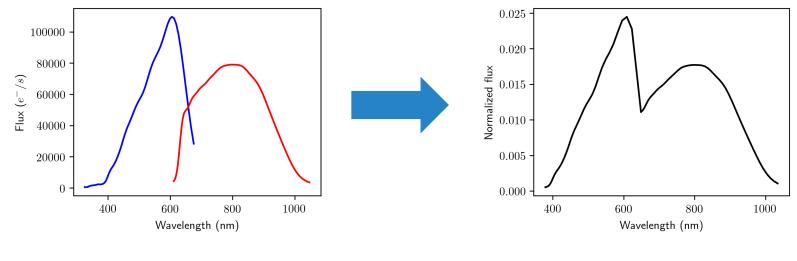

Daniel Garabato

University of A Coruna


Objectives

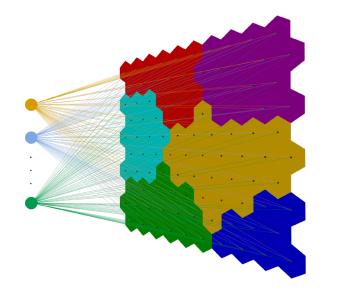
- Process those sources with the lowest probability classification (outliers) from DSC, complementing its overall classification
 - > This means dealing with weird and infrequent objects, low SNR objects, artifacts, etc.
- > We pretend to group them according to their BP/RP spectra, so that similar ones should lie in the same group or a close one
 - Gaia observables are used to provide a statistical description
 - > Quality indices are produced to measure the homogeneity of such groups
 - We try to give a hint on the astronomical type

Outline


Stage 1: Data selection

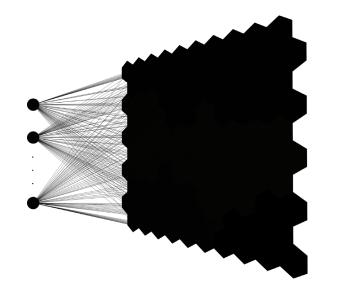
- > Astrometric filters
 - > Non duplicated sources
 - Converged solution
- > Photometric filters
 - Sources without BP/RP spectra were discarded
 - > Minimum of 5 BP/RP transits
 - DSC combined probability (P_C)
 - > $\max(P_C) < 0.999$

For DR3 we processed 56 million sources

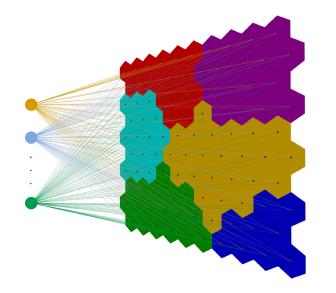

Stage 2: Data preprocessing

(a) Original BP/RP spectra

(b) Preprocessed spectra


Stage 3: Clustering

We use **Self Organized Maps** (SOM)


- > Unsupervised and competitive ANN
 - Similarity function: Euclidean distance
- > Dimensionality reduction
 - > 2D grid (**30x30**)
- > Topological order preservation
 - Neighborhood function: Gaussian
- > Each neuron has a **prototype**, which is a virtual pattern that represents the sources assigned to it
- Specialized tools allow for visual exploration
 - GUASOM DR3: <u>https://guasom.citic.udc.es</u>

Stage 4: Description

- > The actual product of a SOM is the grouping itself
 - > Where does a processed source belong to?
 - > Sources within a neuron have similar XP spectra

Stage 4: Description

- The actual product of a SOM is the grouping itself
 - > Where does a processed source belong to?
 - > Sources within a neuron have similar XP spectra
- > Can we provide some **extended features**?
 - > Statistical descriptors: G, G_{BP} , G_{RP} , parallax...
 - Indices to measure the homogeneity of each neuron (quality)
 - Hint on the astronomical type for best quality neurons

Stage 4a: Statistical description

5.48

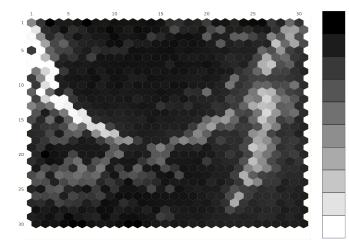
10.02

14.56

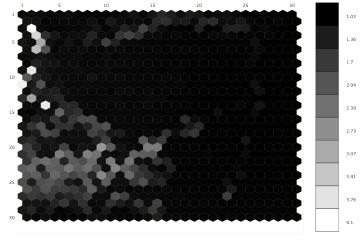
19.11

23.65

28.19


32.73

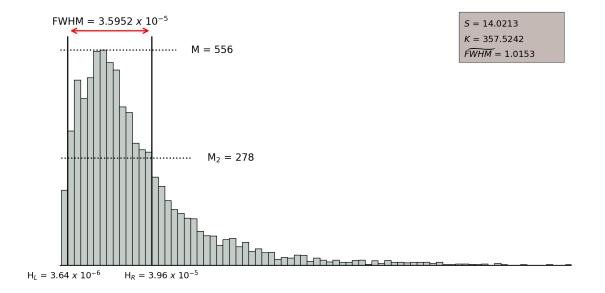
37.28


41.82

46.36

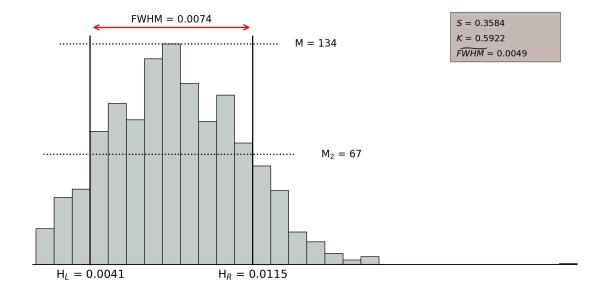
Example of statistical description for Gaia observables

RP transits

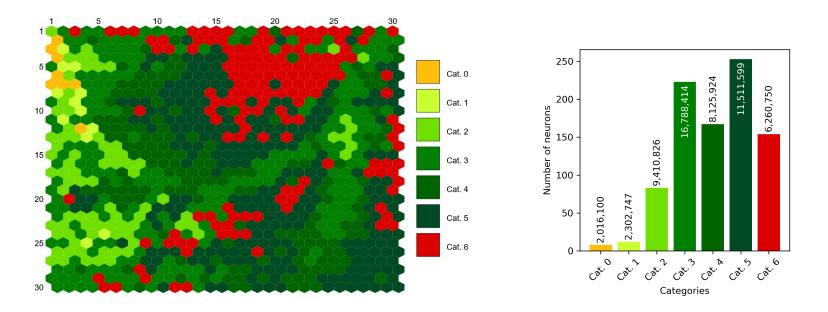


RUWE

Stage 4b: Quality assessment (I)


- > Based on the intra-neuron distance distribution
 - > Full Width at Half Maximum (FWHM)
 - > Skewness
 - > Kurtosis
- > We derived a categorical index to rank the neurons
 - > Percentile values on the above quantities were used to determine its value
 - > Six quality categories were established from 0 (best ones) to 6 (worst ones)

Stage 4b: Quality assessment (II)

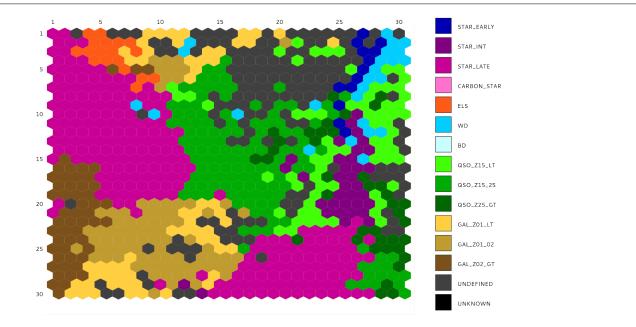

Example of a good quality neuron

Stage 4b: Quality assessment (III)

Example of a bad quality neuron

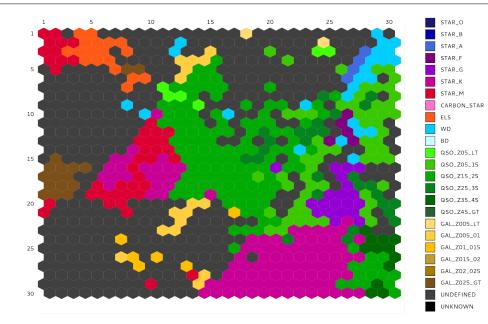
Stage 4b: Quality assessment (IV)

Categorical index


Categorical index distribution

Stage 4c: Labeling (I)

Гуре	Basic label	Specific label
Star	STAR EARLY	Star O
		Star B
		Star A
	Star Intermediate	Star F
		Star G
	Star Late	Star K
		Star M
	WHITE DWARF	
	EMISSION LINE STAR	
	CARBON STAR	
	PHYSICAL BINARY	
Quasar	Quasar Z25_GT	QUASAR Z45_GT
		Quasar Z35_45
		Quasar Z25_35
	QUASAR Z15_25	
	Quasar Z15_LT	Quasar Z05_15
		Quasar Z05_LT
Galaxy	Galaxy Z02_GT	GALAXY Z025_GT
		Galaxy Z02_025
	Galaxy Z01_02	Galaxy Z015_02
		Galaxy Z01_015
	GALAXY Z01_LT	Galaxy Z005_01
		Galaxy Z005_LT

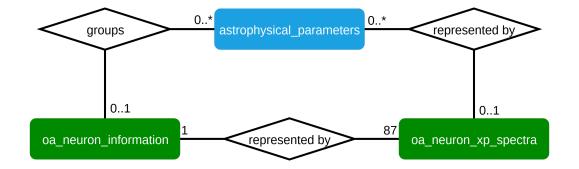

- > We gather a reference set of sources for all the considered types
 - > Two label types: **basic** and **specific**
 - Templates were extracted from isolated SOMs built on these sources
- The class labels are assigned using a template matching procedure
- > We label just good quality neurons
 - > If QC < 6, then non label is assigned at all
- > The neuron is labeled, not the sources
 - A label for a given source can be inferred from the neuron label, if desired

Stage 4c: Labeling (II)

Basic set of labels

Stage 4c: Labeling (III)

Specific set of labels


Limitations in DR3

- No outlier detector was used, we just selected those sources with lowest classification probabilities from DSC
- > The reference templates used were not representative for some types
 - > No templates were built for Physical Binaries
 - > Some templates for quasars were not accurate enough
- > Many sources were discarded due to issues in their XP spectra
 - > These mostly correspond to sources with a few number of transits (<5)

Recommendations

- > The class labels provided by OA are not ground truth
 - > The user should rely on the given quality measurements to decide whether to trust a label or not
 - In order to infer the class label of a source from the neuron, the classification distance (or percentile) should also be taken into account

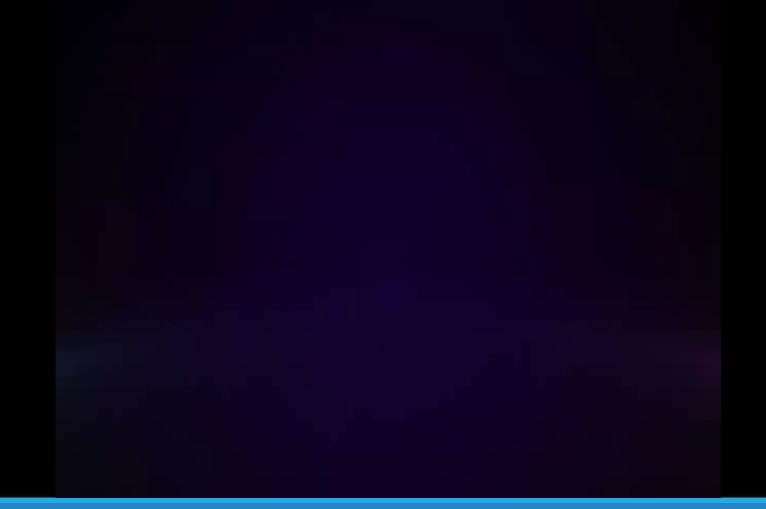
OA products in the Archive (I)

OA products in the Archive (II)

- > astrophysical_parameters
 - > Correspondence between the sources and the neurons
 - > Distance between a source and the prototype of the neuron it belongs to
- > oa_neuron_xp_spectra
 - > Multidimensional data related to each neuron
 - > Prototype
 - > Template, if a class label was assigned
- > oa_neuron_information
 - > Non multidimensional data related to each neuron
 - > Position within the map
 - > Statistical descriptions on Gaia observables
 - > Quality measurements

Querying the Gaia Archive

- To retrieve all the information the 3 tables mentioned before should be joined on 'neuronId'
- The official documentation / papers give additional examples on how to perform common operations
- Use our visualization tool which also provides built-in ADQL queries to retrieve information for each neuron


GUASOM visualization tool

Available at: <u>https://guasom.citic.udc.es</u>

Update for DR4

- Outlier Analysis (OA)
 - > Improve outlier detection/selection with DSC
 - > Improve the preprocessing of the data
 - > Update the set of templates used to label the neurons
- Unsupervised clustering analysis (UCA)
 - > New CU8 module, currently under development
 - Perform a clustering on the entire survey, not just outliers using a similar procedure than in OA
 - We will use pre-trained maps on well known sets of sources to speed up the execution

