ESP-ELS and ESP-HS modules

Focused processing of hot (OBA) & emission-line stars for Gaia DR3

Y. Frémat¹

¹Royal observatory of Belgium (ROB)

With direct contributions from:

A. Lobel (ROB), C. Martayan (ESO), J. Zorec (IAP), A. Jonckheere

Y.Frémat, March 28, 2023: DPAC CU8 webinar

ESP-ELS and ESP-HS modules

Apsis & ESP Workflows

- Extended Stellar Parametrizer: ELS (Emission-Line Stars) and HS (Hot Stars)
- spectraltype_esphs
- classlabel_espels, classprob_espels_...
- ew_espels_halpha, ew_espels_halpha_model, ew_espels_halpha_flag

teff_esphs, logg_esphs, azero_esphs, ag_esphs, ebpminrp_esphs, (vsini_esphs)

Y.Frémat, March 28, 2023: DPAC CU8 webinar

GDPAC (S)

AP.

-

Output: Magnitude Distribution

Y.Frémat, March 28, 2023: DPAC CU8 webinar

ESP-ELS and ESP-HS modules

Presentation Outline

ESP-ELS

- Methods
- Results
- ESP-HS
 - Methods
 - Results
- Overview & DR3 to DR4

Classification of Emission-Line Stars (ELS): Methodology

- Apsis only processes co-added spectra, not externally calibrated
- Division by a mean 'response' curve
- Extraction main emission features in the BP and RP
- Locally normalize these
- Combine with GSP-Phot APs (before post-processing) for ELS classlabel

[[[]] 0] PN arbitrary scale CIV C III.IV C III,IV CIII WC He II N IV WN Be 300 400 500 600 700 800 900 1000 wavelength [nm]

Creevey et al. 2022, Figure 8

Measurement of $H\alpha$ pseudo-Equivalent Width (pEW)

- Facts: at (RP) Hα resolution 8 nm and 2.5 nm samples
- Measurement band:
 646 670 nm.
- No Hα absorption in M and K stars, but molecule blends bend the continuum.

Y.Frémat, March 28, 2023: DPAC CU8 webinar

H α pEW (model \Im GSP-Phot APs)

- ~2 M. random
 targets uniformally
 distributed over T_{eff}
- Variations seen in synthetic spectra.
- GSP-Phot APs available (i.e. before post-processing) when Hα is measured
- Model value used to 'correct' at $T_{\rm eff} \leq$ 5000K.

····· AP OPAC

H α pEW ('corrected' m GSP-Phot APs)

ew_espels
_halpha_flag: 0
(model not
subtracted), 1
(model subtracted)

stored in
ew_espels
_halpha

ew_espels
_halpha_model
allways present

 pEW used to trigger/identify ELS

..... 🗼 Grac 🗶 🚥

Hα pEW (all 'corrected' m GSP-Phot APs)

AP OPAC

-

$H\alpha$ pEW (return to measurement)

Gaia DR3 H α pseudo-Equivalent Width vs H α

- blue: 1-1 relation
- value 2 to 3 times smaller than expected, worse for M and K stars.
- comparisons with LAMOST: see
 Shridharan et al.
 2022, AA, 668, A156

AP GDRC

-

ESP-ELS: Labelling Workflow

- Three RF classifiers all trained on synthetic and observed data.
- Spectral type tag (spectraltype_esphs): M, K, B, O, CSTAR
- Identification of WC/WN stars, PN, then Be, Herbig Ae/Be, T Tauri, and active M dwarf stars.
- classlabel_espels and classlabel_espels_flag
- classprob_*

Online Doc. Sect. 11.3.7, Figure 11.37

ESP-ELS: classlabel Confusion Matrix

- R/P: horizontally/vertically sums up. Color shades vary with P.
- Most PNs, TTauris and dMes lost, half of Be and Ae/Be stars identified
- Classifier most reliable for Be, WC.
- No filtering during the post-processing.
- classlabel_espels _flag: 1 -4 (50 % probability if ≤ 2).
 - +10 if APs not consistent with

spectraltype_esphs

 +20 if APs removed from Gaia DR3 after post-processing.

..... Ar Grac 😍

ESP-ELS: classlabel

Fouesneau et al. 2022

Table 2. Number of identified candidates per ELS class and per quality flag (QF) value. QF ≤ 2 implies a probability larger than 50%.

Class	classlabel_espels_flag (QF)						
	0	1	2	3	4	10-14	20-24
Be	3 2 1 0	3118	2815	2332	1 4 7 5	122	3 879
Ae/Be	35	94	231	519	972	299	1754
T Tauri	914	2 0 5 2	1 594	1083	740	1180	27 594
dMe	0	1	5	54	178	43	380
PN	37	52	83	85	16	0	0
WC	106	13	8	7	2	0	0
WN	173	38	29	142	47	0	0

- 57939 not null classlabel_espels
- classlabel_espels
 _flag ≤ 2
- See Online Doc. Sect. 11.3.7 (Results), e.g. Figure 11.41

spectraltype_esphs vs Simbad

- qf=flags_esphs[1:2]
- color shades vary vertically, with lower (P) percentage in the cell
- contamination from neighbour types expected, but much stronger between O and B types

spectraltype_esphs vs LAMOST DR6

Xiang et al. 2022

- \blacksquare Xiang et al's ${\cal T}_{\rm eff}$ converted into spectral type tag. See Table A.1 in Creevey et al. 2022.
- 320 578 with ESP tag. 1865 received a G,K or M tag ...

spectraltype_esphs vs LAMOST DR6

spectraltype_esphs vs Galactic O Star Catalogue

GOSC: Maíz Apellániz, J. et al. (2013)

- input list of 620 targets (main & supps). 582 found (21 too faint, 7 XP poor quality, 9 ?)
- filtering on qf=flags_esphs[1:2]: no significant impact on classification quality.
- strong O/B contamination (not depending on R_V nor A_V)

AP Determination with ESP-HS

- Synthetic spectrum fit to XP and RVS data (when available).
- rebinned to 3 samples
- Libs.: O. Kochukhov & D. Shulyak, OB star models (Lanz & Hubeny), Synspec
- Assumption: Solar chemical composition

AP Determination with ESP-HS

- Extinction: Fitzpatrick (1999), R_V = 3.1
- Synthetic/Simulations spectra of reference of A and B stars (w. stromgren photometry) compared to Gaia XP data
- comparisons used to empirically improve the simulations, exclude domains

Y.Frémat, March 28, 2023: DPAC CU8 webinar

····· Are Copacity

AP Determination vs GroundBased Surveys

■ in orange: median (line), interquantile dispersion (shades)

- T_{eff} : trend to underestimate the temperature, especially above 25 000 K. Scatter increases with T_{eff} from 200-600 K (A-type), to 3000-10000 K (O-type).
- log g: dispersion 0.3-0.5, double for O-type stars.

GDPAC @

-

AP Determination vs Clusters

- Left: Case of NGC869, Right: 1524 members of 42 open clusters
- CD used to identify the closest isochrone point
- *T*_{eff}: disp 800-6000 K; log*g*: disp 0.15-0.30 dex

Completeness of the OBA Sample from OCs

- Post-processing based on gof in XP and RVS (e.g 1/3rd of GOSC stars remaining).
- lack of stars trends with extinction

Interstellar Reddening

Fair agreement with other surveys and cluster data.

• left: comparison with OCs; right: comparison for O-type stars with different R_V . Different trends, expected trend with R5495, as assumption is R_V =3.1.

Vsini Determination vs. epoch vbroad

- Performed on co-added spectra, assuming Gaussian LSF, in the AP determination.
- vsini_esphs larger than CU6/'epoch' vbroad at small values
- behaviour similar to vbroad (Frémat et al. 2022):

The quality degrades rapidly with magnitude and ${\cal T}_{eff}$, above G=10 and ${\cal T}_{eff}{>}10\,000K.$

see also Figure 20 in Fouesneau et al. 2022

-

V sin *i* Determination from co-added RVS

Figures to appear in Zorec 2023

Y.Frémat, March 28, 2023: DPAC CU8 webinar

ESP-ELS and ESP-HS modules

····· Are Apric @

Overview & from DR3 to DR4

ESP-ELS:

DR4> probability of H α being in emission DR4> RVS included in the classification

ESP-HS:

- DR4> Metallicity determination from RVS for A and late-B stars.
- DR4> Post-processing less restrictive.

ESP-ELS and ESP-HS modules

Thank you for your attention

Output: Magnitude Distribution

Y.Frémat, March 28, 2023: DPAC CU8 webinar

ESP-ELS and ESP-HS modules

Output: Magnitude Distribution

👬 🔉 🖓 PAC 🍘

Y.Frémat, March 28, 2023: DPAC CU8 webinar

ESP-ELS and ESP-HS modules