

A scientific guide to Gaia Astrophysical Parameters

Day 4

organized by Coordination Unit 8

"A scientific guide to Gaia Astrophysical Parameters" Day 4

QSOC

Ludovic Delchambre

University of Liège, Belgium

"A scientific guide to Gaia Astrophysical Parameters" Day 4

Outline

- Overview
- Method
 - Quasar templates
 - Algorithm
- Performance and results
- Use of QSOC results
- Future plans

Overview

Objective

The quasar classifier (QSOC) module is designed to determine the redshift, z, of the sources that are classified as quasars by the Discrete Source Classifier (DSC) module.

QSOC is <u>not</u> a classification module but instead processes all sources with classprob_dsc_combmod_quasar ≥ 0.01 .

Overview

QSOC is complete but not very pure.

Reason: We can draw a pure sample from a complete sample, but not the opposite.

Purity can be achieved through classlabel_dsc_joint = 'quasar' or recipes given in <u>Gaia</u> <u>Collaboration, Bailer-Jones</u> <u>et al. (2022)</u>.

Method

QSOC is based on a chi-square approach that compares the observed BP/RP spectra sampled by SMSgen to quasar rest-frame templates in order to infer their redshift.

The predicted redshifts are in the range 0.0826 < z < 6.12295

1. Extrapolate 297 264 quasars from the twelfth release of the Sloan Digital Sky Survey Quasar catalogue of <u>Pâris et al. (2017)</u> using the weighted PCA method of <u>Delchambre (2015)</u>.

SDSS J104231.77+463015.4

2. Convert the extrapolated spectra into BP/RP spectra through the use of the BP/RP spectrum simulator MIOG (<u>Montegriffo et al., 2022</u>, but see also the <u>GaiaXPy</u> tool).

3. Divide each of the BP/RP spectrum by the spectrum that would be obtained from a uniform SED: removal of the bell-shape + fix the different integration width of each pixel.

SDSS J102806.55+370325.2

3. Divide each of the BP/RP spectrum by the spectrum that would be obtained from a uniform SED: removal of the bell-shape + fix the different integration width of each pixel.

SDSS J102806.55+370325.2

4. Subtract continua then retrieve the dominant BP/RP components using the weighted PCA method of <u>Delchambre (2015)</u>.

The redshift

$$z = \frac{\lambda_{\rm obs} - \lambda_{\rm rest}}{\lambda_{\rm rest}} = \frac{\lambda_{\rm obs}}{\lambda_{\rm rest}} - 1$$

turns into a simple offset once considered on a logarithmic wavelength scale

$$Z = \log(z+1) = \log \lambda_{\rm obs} - \log \lambda_{\rm rest}$$

Given a set of rest-frame templates, T, and an observation vector, s, sampled on the same logarithmic wavelength scale, $\lambda_i = \lambda_0 L^i$ (here log L = 0.001), we aim to find the shift, k, that minimizes

$$\chi^{2}(k) = \sum_{i} \frac{1}{\sigma_{i}^{2}} \left(s_{i} - \sum_{j} a_{j,k} T_{i+k,j} \right)^{2} \qquad z = L^{k} - 1$$

which can be computed in O(N log N) flops (Delchambre, 2016) through

$$\operatorname{ccf}(k) = \left(\sum_{i} \frac{s_i^2}{\sigma_i^2}\right) - \chi^2(k) = C - \chi^2(k)$$

In QSOC: $\operatorname{ccf}(k) = \operatorname{ccf}_{\operatorname{bp}}(k) + \operatorname{ccf}_{\operatorname{rp}}(k)$

Illustration with SDSS J000313.08+274044.9, a z=2.2329 quasar.

Illustration

- 15 emission line templates
- 5 continuum templates

<u>Gaia DR3</u>

- 1 emission line templates
- 3 continuum templates

The maximal value of the CCF <u>usually</u> corresponds to the most probable redshift, but it is not always the case.

The redshift selected by QSOC is the one that maximizes

$$S(k) = w_0 \times \left[\chi_r^2(k) \right]^p + w_1 \times \left[Z_{\text{score}}(k) \right]^p$$

where $w_0 = 0.71413, w_1 = 0.28587, p = 0.24365,$

$$\chi_r^2(k) = \frac{\operatorname{ccf}(k)}{\max_k(\operatorname{ccf})}$$

and

$$Z_{\text{score}}(k) = \prod_{\lambda} \left[\frac{1}{2} \left(1 + \operatorname{erf} \frac{e_{\lambda}}{\sigma(e_{\lambda})\sqrt{2}} \right) \right]^{I_{\lambda}},$$

The zscore is a weighted geometric mean of a set of normal CDF of mean zero and standard deviations $\sigma(e_{\lambda})$ evaluated at e_{λ} .

If zscore \approx 1, then all emission lines we expect at redshift z are present.

If we are missing a single emission line, then zscore quickly drops to zero.

The fit of a quadratic polynomial to the selected peak provides

- A sub-sampling precision on the redshift
- Normal uncertainties on Z

The error on z is distributed as a log-normal distribution whose 0.16 and 0.84 quantiles are respectively given by

$$z_{\rm low} = \exp(Z - \sigma_Z) - 1$$

and

$$z_{\rm up} = \exp(Z + \sigma_Z) - 1$$

Warning flag	Bit	Value	Condition(s) for rising
Z_AMBIGUOUS	1	1	The CCF has more than one maximum with $\chi_r^2(k) > 0.85$, meaning that
			at least two redshifts lead to a similar χ^2 and the solution is ambiguous.
Z_LOWCHI2R	2	2	$\chi_r^2(k) < 0.9$
Z_LOWZSCORE	3	4	$Z_{\text{score}}(k) < 0.9$
Z_NOTOPTIMAL	4	8	The selected solution did not correspond to the global maximum (i.e.
			$\chi_r^2(k) < 1)$
Z_BADSPEC	5	16	The BP/RP spectra upon which this prediction is based are considered
			as unreliable. An unreliable spectrum has a number of spectral transits
			in BP, $N_{\rm bp}$ or RP, $N_{\rm rp}$ that is lower than or equal to ten transits or $G \ge$
			20.5 mag or $G \ge 19 + 0.03 \times (N_{bp} - 10)$ mag or $G \ge 19 + 0.03 \times$
			$(N_{\rm rp} - 10)$ mag (see the online documentation for more information on
			the derivation of these limits).

Performance and results

QSOC results are available in the Gaia DR3 qso_candidates table

- redshift_qsoc: The quasar redshift, z
- redshift_qsoc_lower and redshift_qsoc_upper: The lower and upper confidence intervals corresponding to the 16% and 84% quantiles of z
- ccfratio_qsoc: The chi-square ratio, χ_r^2
- zscore_qsoc: The zscore
- flags_qsoc: The QSOC processing flags

Performance and results

Comparison with literature values

A 1" cross-match against the Milliquas 7.2 quasar catalogue of <u>Flesch (2021)</u> (type='Q') yielded 439 127 common sources.

- 279 850 / 439 127 = 63.73% have $|\Delta z| < 0.1$
- 89 107 / 91 320 = 97.58% have |Δz| < 0.1 if flags_qsoc = 0

The logarithmic redshift error

$$\Delta Z = \log(z+1) - \log(z_{\rm true}+1) = \log \lambda_{\rm true} - \log \lambda_{\rm false}$$

Performance and results

Considering sources with $|\Delta z| < 0.1$,

 $\Delta Z/\sigma_Z$

where

 $\sigma_Z = [\log(z_{\rm up} + 1) - \log(z_{\rm low} + 1)]/2$

approximately follows a normal distribution with

 μ =0.007 and σ = 1.053

and

 μ =0.002 and σ = 1.14 if flags_qsoc=0

Redshift dependence on G magnitude

Around 90% of the sources with G \leq 19 mag have $|\Delta z| < 0.1$.

The same fraction is obtained for 19.9 < G < 20 mag sources only if flags_qsoc= 0.

These correspond to a very small fraction (5.5%) of the sources in this magnitude range.

Illustration: De 0.8Fraction of sources 0.60.40.2(2022) 0 17 17.518 18.51919.52020.521G (mag)

Fraction of sources with $|\Delta z| < 0.1$ –

Additionally consider flags_qsoc=16 sources.

Z_BADSPEC (bit 5, value 16)

Raised if one of the following conditions is met:

- 1. The number of BP or RP spectral transits (N_{BP} and N_{RP}), is lower than 10 transits
- 2. G > 20.5 mag
- 3. $G > 19 + 0.03 \times (N_{BP} 10) \text{ mag}$
- 4. $G > 19 + 0.03 \times (N_{RP} 10) \text{ mag}$

At 19.9 < G < 20 mag

92% of the sources have $|\Delta z| < 0.1$ while 36.5% of the sources are retained

At 20.4 < G < 20.5 mag

81.5% of the sources have $|\Delta z| < 0.1$ while 22% of the sources are retained

Completeness

Fraction of sources that have $|\Delta z| < 0.1$ wrt. literature redshift.

Lower completeness at

- $z\approx 2$, due to $C_{iv} \leftrightarrow Ly\alpha$ mismatches.
- 0.9 < z < 1.3, due to the sole presence of the Mg_{II} emission line in this range

Appropriate cuts on flags_qsoc allow these shortcomings to be alleviated.

The sole presence of the Mg_{II} emission line has the deleterious effect of increasing the rate of mismatches between this line and the Ly α and H β emission lines.

This causes many false predictions in very low (0.08 < z < 0.32) and very high (3.4 < z < 4.3) redshift regions.

At $z \approx 1.3$, the C_{IIII} emission line enters the BP spectrum while the Mg_{II} line now lies on the peak of the BP spectrum, where it is wiped out in the mean spectrum representation, leading to mismatches between C_{IIII} and the Ly α or Mg_{II} emission lines.

Misidentification of CIII] emission line as Ly α in 1.2 < z < 1.3 quasars

Purity

Fraction of sources that have $|\Delta z| < 0.1$ wrt. predicted redshift.

Best purity in the range 1.7 < z < 2.4 due to the combined presence of $Ly\alpha + C_{IV} + C_{III} + Mg_{II}$ emission lines.

Cuts on the flags_qsoc allow us to recover about 90% of sources with $|\Delta z| < 0.1$ in the range 0.2 < z < 4.

The lower purity at z < 0.2 or z > 4, comes from the rarity of these very low/high redshift quasars \rightarrow any false predictions towards these loosely populated regions are largely reflected

Fraction of sources with $|\Delta z| < 0.1$ $\begin{array}{l} \mbox{Fraction of flags_qsoc} = 0 \mbox{ sources with } \left| \Delta z \right| < 0.1 \\ \mbox{ Fraction of sources with flags_qsoc} = 0 \end{array}$ Fraction of flags_qsoc = {0, 16} sources with $|\Delta z| < 0.1$ Fraction of sources with flags_qsoc = {0, 16} Illustration: Delcha 0.8Fraction of sources 0.60.40.22 3 4 5 QSOC redshift

Summary

- QSOC aim to be complete rather than pure
 Users interested in purer samples should use <u>classlabel_dsc_joint</u> ='quasar' or recipes given in <u>Gaia</u> <u>Collaboration, Bailer-Jones et al. (2022)</u>.
- Degeneracies exist between the predicted redshifts over some redshift ranges
 - **0.9 < z < 1.3**: Due to the sole presence of the Mg_{μ} emission line in this range
 - $z\approx 2$, due to $C_{IV} \leftrightarrow Ly\alpha$ mismatches

More frequent amongst faint sources. Cuts on <u>flags_qsoc</u> can discard these degenerated cases.

- Requiring that flags_qsoc =0 may lead to a large amount of predictions that are discarded For users interested in G≥19 mag quasars, we suggest to use flags_qsoc=0 or flags_qsoc=16.
- QSOC is designed to process Type-I/core-dominated quasars
 Galaxies, type-II AGN and BL Lacertae/Blazars objects usually have poor predictions and <u>flags_qsoc</u>≠0.
- In Gaia DR3, we did not had access to the full covariance matrix on the BP/RP fluxes
 The reduced chi-square of the solution is systematically underestimated and is consequently not published.
 The computed redshift and associated confidence intervals though appropriately re-scaled, might also
 sporadically suffer from this limitation

Future plans

1. Use of epoch BP/RP spectra

Variability taken into account, sharper spectral features, uncorrelated noise on the flux (required for the correlation algorithm), fix the wiggles issues + other internal benefits.

2. Use of priors

Based on a quasar luminosity function. Lift off the degeneracies between most of the predicted redshifts.

3. Potential new astrophysical parameters

Continuum slope, balnicity index, emission line equivalent width, absolute magnitude, second/third most probable redshift, ...