Systems out-of-equilibrium: fluctuation relations

STEFANO RUFFO

SISSA, Trieste, Italy

```
IFPU Focus Week (Feb 6-10 2023); Dynamical complexity in astrophysical context
```

February 10, 2023

Bibliography

- Chris Jarzynski, Annu. Rev. Condens. Matter Phys. 2011.2:329-51
- S. Gupta, T. Dauxois and S. Ruffo, Europhys. Lett., 113 60008 (2016)

Hatano-Sasa, Jarzynski and Crooks

Protocol $\left.\{\lambda(t)\}_{0 \leq t \leq \tau} ; \lambda(0) \equiv \lambda_{1}, \lambda(\tau) \equiv \lambda_{2}\right\}$

$$
Y \equiv \int_{0}^{\tau} \mathrm{d} t \frac{\mathrm{~d} \lambda(t)}{\mathrm{d} t} \frac{\partial \Phi}{\partial \lambda}(\mathcal{C}(t), \lambda(t)) \quad \Phi(\mathcal{C}, \lambda) \equiv-\ln \rho_{\mathrm{ss}}(\mathcal{C} ; \lambda)
$$

Y is dissipated work.

$$
\begin{gathered}
\left\langle e^{-Y}\right\rangle=1 \\
\left\langle e^{-\beta W}\right\rangle=e^{-\beta \Delta F} \\
\frac{P_{\mathrm{F}}\left(W_{\mathrm{F}}\right)}{P_{\mathrm{R}}\left(-W_{\mathrm{F}}\right)}=e^{\beta\left(W_{\mathrm{F}}-\Delta F\right)}
\end{gathered}
$$

Fluctuation theorems: Nonequilibrium work relations

Gas-piston setup with $N \sim 10^{23}$ particle (Macroscopic). The piston is rapidly pushed into the gas and then pulled at the initial position (work is positive if done against the system)

$$
W>0
$$

Microscopically (in a gas with few particles), we could observe $W<0$, but, on average

$$
\langle W\rangle>0
$$

The second principle can be formulated as an equality (Jarzynski)

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=1
$$

If the piston is manipulated in a time symmetric manner (Crooks)

$$
\frac{P(W)}{P(-W)}=e^{W /\left(k_{B} T\right)}
$$

Protocol

$t=0[\lambda=A, T] \quad$ equilibrium $\rightarrow t=\tau \lambda=B$ non equilibrium

$$
\rightarrow t=\tau^{*}[\lambda=B, T] \text { equilibrium }
$$

No external work is done on the system in the time interval $\tau<t<\tau^{*}$.
Clausius inequality (Second Law of Thermodynamics)

$$
W \geq \Delta F=F_{B, T}-F_{A, T}
$$

where F is the Helmholtz free energy. When the parameter λ is varied slowly (adiabatic transformation) $W=\Delta F$.

Important: Fluctuation theorems are valid also when the system is isolated after it is equilibrated at time $t=0$.

Microscopic model

$$
H(\mathbf{x} ; \lambda)=\sum_{i=1}^{3} \frac{p_{i}^{2}}{2 m}+\sum_{i=0}^{3} U\left(z_{k+1}-z_{k}\right)
$$

where $\mathbf{x}=\left(z_{1}, z_{2}, z_{3}, p_{1}, p_{2}, p_{3}\right)$ and the boundary conditions are $z_{0}=0, z_{4}=\lambda(t)$

$$
\begin{gathered}
W=\int d W=\int_{A}^{B} \mathrm{~d} \lambda \frac{\partial H}{\partial \lambda}(\mathbf{x}, \lambda)=\int_{0}^{t} \mathrm{~d} t \dot{\lambda} \frac{\partial H}{\partial \lambda}(\mathbf{x}(\mathbf{t}), \lambda(t)) \\
\mathcal{H}(\mathbf{x}, \mathbf{y}, \lambda)=H(\mathbf{x} ; \lambda)+H_{\text {env }}(\mathbf{y})+H_{\text {int }}(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

Boltzmann-Gibbs distributions

If the interaction with the bath $H_{\text {int }}$ is sufficiently weak

$$
p_{\lambda, T}^{e q}(\mathbf{x})=\frac{1}{Z_{\lambda, T}} \exp \left[-H(\mathbf{x} ; \lambda) /\left(k_{B} T\right)\right], Z_{\lambda, T}=\int \mathrm{d} \mathbf{x} \exp \left[-H(\mathbf{x} ; \lambda) /\left(k_{B} T\right)\right]
$$

If $H_{\text {int }}$ is instead "large"

$$
p_{\lambda, T}^{e q} \propto \exp \left(-H^{*} / k_{B} T\right), H^{*}(\mathbf{x} ; \lambda)=H(\mathbf{x} ; \lambda)+\phi(\mathbf{x}, T)
$$

where $\phi(\mathbf{x}, T)$ is the free-energy cost of inserting the system into the thermostat. The free energy associated with the equilibrium state is

$$
F_{\lambda, T}=-k_{B} T \ln Z_{\lambda, T}
$$

For a "swarm" of independent trajectories $\left(\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \ldots,(0<t<\tau)\right.$ one can compute the corresponding work W_{1}, W_{2}, \ldots, and determine the distribution $P(W)$, which must respect

$$
\langle W\rangle=\int \mathrm{d} W P(W) W \geq \Delta F=F_{B, T}-F_{A, T}
$$

Proof of Jarzynski for an isolated system

After preparing the system in the initial equilibrium state, we disconnect it from the environment and perform work by varying λ from A to B. The statistics of work is determined by the statistics over the initial state

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\int \mathrm{d} \mathbf{x}(0) p_{A, T}^{e q}(\mathbf{x}(0)) e^{-W /\left(k_{B} T\right)}
$$

Since $\frac{\mathrm{d} H}{\mathrm{~d} t}=\frac{\partial H}{\partial t}$, the work is given by

$$
W=H(\mathbf{x}(\tau), B)-H(\mathbf{x}(0), A)
$$

Changing variables from initial to final

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{1}{Z_{A, T}} \int \mathrm{~d} \mathbf{x}(\tau)|\partial \mathbf{x}(\tau) / \partial \mathbf{x}(0)|^{-1} \exp \left(-H(\mathbf{x}(\tau) ; B) /\left(k_{B} T\right)\right)
$$

Using Liouville theorem $|\partial \mathbf{x}(\tau) / \partial \mathbf{x}(0)|=1$, one finally gets

$$
\left\langle e^{-W /\left(k_{B} T\right)}\right\rangle=\frac{Z_{B, T}}{Z_{A, T}}=e^{-\left(F_{B, T}-F_{A, T}\right) /\left(k_{B} T\right)}
$$

A stochastic model of long-range interacting particles N interacting particles $(i=1,2, \ldots, N)$ moving on a unit circle, with angles θ_{1}.
Microscopic configuration

$$
\mathcal{C}=\left\{\theta_{i} ; i=1,2, \ldots, N\right\}
$$

The particles interact via the potential

$$
\mathcal{V}(\mathcal{C})=\frac{K}{2 N} \sum_{i, j=1}^{N}\left[1-\cos \left(\theta_{i}-\theta_{j}\right)\right]
$$

$K=1$ in the following. External fields h_{i}

$$
\mathcal{V}_{\mathrm{ext}}(\mathcal{C})=\sum_{i=1}^{N} h_{i} \cos \theta_{i}
$$

The fields h_{i} 's may be considered as quenched random variables with a common distribution $P(h)$.
The net potential energy is therefore

$$
V(\mathcal{C})=\mathcal{V}(\mathcal{C})+\mathcal{V}_{\text {ext }}(\mathcal{C})
$$

The stochastic dynamics

All particles sequentially attempt to move backward (forward) on the circle

$$
\begin{aligned}
& \theta_{i} \rightarrow \theta_{i}^{\prime} \\
& \theta_{i} \rightarrow \theta_{i}^{\prime}+f_{i} \text { with probability } \mathrm{p} \\
&=\theta_{i}-f_{i} \text { with probability } \mathrm{q}=1-\mathrm{p}
\end{aligned}
$$

The f_{i} are quenched random variables, each particles carries its own f_{i}.
However, particles effectively take up the attempted position with probability $g(\Delta V(\mathcal{C})) \Delta t$

$$
\begin{gathered}
\Delta V(\mathcal{C})=(1 / N) \sum_{j=1}^{N}\left[-\cos \left(\theta_{i}^{\prime}-\theta_{j}\right)+\cos \left(\theta_{i}-\theta_{j}\right)\right]-h_{i}\left[\cos \theta_{i}^{\prime}-\cos \theta_{i}\right] \\
g(z)=(1 / 2)[1-\tanh (\beta z / 2)]
\end{gathered}
$$

Overdamped motion of particles in contact with a heat-bath at inverse temperature β and in presence of an external field. For $p \neq q$ the particles move asymmetrically under the action of an external drive.

Master equation in continuous time

$P=P\left(\left\{\theta_{i}\right\} ; t\right)$ be the probability to observe the configuration $\mathcal{C}=\left\{\theta_{i}\right\}$ at time t and take the limit $\Delta t \rightarrow 0$

$$
\begin{aligned}
& \frac{\partial P}{\partial t}=\sum_{i=1}^{N}[\\
& +P\left(\ldots, \theta_{i}-f_{i}, \ldots ; t\right) p g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}-f_{i}\right) \rightarrow \theta_{i}\right]\right)\right)+ \\
& +P\left(\ldots, \theta_{i}+f_{i}, \ldots ; t\right) q g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}+f_{i}\right) \rightarrow \theta_{i}\right]\right)\right)- \\
& \left.-P\left(\ldots, \theta_{i}, \ldots ; t\right)\left\{p g\left(\Delta V\left(\mathcal{C}\left[\theta_{i} \rightarrow\left(\theta_{i}+f_{i}\right)\right]\right)\right)+q g\left(\Delta V\left(\mathcal{C}\left[\left(\theta_{i}\right) \rightarrow\left(\theta_{i}-f_{i}\right)\right]\right)\right)\right\}\right]
\end{aligned}
$$

At long times, the system settles into a stationary state $P_{\text {st }}\left(\left\{\theta_{i}\right\}\right)$.

- Equilibrium: For $p=1 / 2$, the particles move in a symmetric manner. The system has an equilibrium stationary state $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right) \propto e^{-\beta V\left(\left\{\theta_{i}\right\}\right)}$. Detailed balance is satisfied.
- Non Equilibrium: For $p \neq 1 / 2$, the particles have a preferred direction, The system at long times settles into a nonequilibrium stationary state, characterized. Detailed balance is violated leading to nonzero probability currents in phase space.

Fokker-Planck limit and Langevin equation

We assume that $f_{i} \ll 1 \forall i$. Taylor expanding in powers of f_{i} 's and retaining terms up to second order

$$
\frac{\partial P}{\partial t}=-\sum_{i=1}^{N} \frac{\partial J_{i}}{\partial \theta_{i}}
$$

where the probability current J_{i} for the i-th particle is given by

$$
J_{i}=\left[(2 p-1) f_{i}+\frac{f_{i}^{2} \beta}{2}\left(\frac{1}{N} \sum_{j=1}^{N} \sin \Delta \theta_{j i}+h_{i} \sin \theta_{i}\right)\right] P-\frac{f_{i}^{2}}{2} \frac{\partial P}{\partial \theta_{i}}
$$

The corresponding Langevin equation is

$$
\dot{\theta}_{i}=(2 p-1) f_{i}+\frac{f_{i}^{2} \beta}{2}\left(\frac{1}{N} \sum_{j=1}^{N} \sin \left(\theta_{j}-\theta_{i}\right)+h_{i} \sin \theta_{i}\right)+f_{i} \eta_{i}(t)
$$

where $\eta_{i}(t)$ is a random noise with

$$
\left\langle\eta_{i}(t)\right\rangle=0, \quad\left\langle\eta_{i}(t) \eta_{j}\left(t^{\prime}\right)\right\rangle=\delta_{i j} \delta\left(t-t^{\prime}\right)
$$

Equilibrium vs. non equilibrium

- Equilibrium: For $p=1 / 2$ the system settles into an equilibrium stationary state $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right)$ which makes $J_{i}=0$ individually for each i.
- Non Equilibrium: For $p \neq 1 / 2$, the system reaches a non-equilibrium stationary state. However, in the special case when the jump length is the same for all the particles and there is no external field ($f_{i}=f$ and $h_{i}=0 \forall i$), one may make a Galilean transformation, $\theta_{i} \rightarrow \theta_{i}+[(2 p-1) f / 2] t$, so that in the frame moving with the velocity $[(2 p-1) f / 2]$, the Langevin equation takes a form identical to the one for $p=1 / 2$, and the stationary state has again the equilibrium measure $P_{\text {eq }}\left(\left\{\theta_{i}\right\}\right)$.

The $N \rightarrow \infty$ limit and the single-particle distribution

In the thermodynamic limit $N \rightarrow \infty$ with $h_{i}=h$, let us introduce the single-particle distribution $\rho(\theta ; f, t)$, the density of particles with jump length f which are at location θ on the circle at time t. ρ is periodic $\rho(\theta ; f, t)=\rho(\theta+2 \pi ; f, t)$ and normalized

$$
\int_{0}^{2 \pi} d \theta \rho(\theta ; f, t)=1 \quad \forall f
$$

In terms of $\rho(\theta ; f, t)$, the Langevin equation reads

$$
\dot{\theta}=(2 p-1) f+\frac{f^{2} \beta}{2}\left(m_{y} \cos \theta-m_{x} \sin \theta+h \sin \theta\right)+f \eta(t),
$$

where

$$
\left(m_{x}, m_{y}\right)=\int d \theta d f(\cos \theta, \sin \theta) \rho(\theta ; f, t) \mathcal{P}(f),
$$

and

$$
\langle\eta(t)\rangle=0, \quad\left\langle\eta(t) \eta\left(t^{\prime}\right)\right\rangle=\delta\left(t-t^{\prime}\right) .
$$

This stochastic dynamics is very similar to the one of the Sakaguchi model.

Work distributions for homogeneous state

Work distributions for inhomogeneous state

$$
\begin{aligned}
& \text { (a) } \phi=0.1, \mathrm{p}=0.5, \beta=1, \tau=10 \\
& \text { (b) } \quad \phi=0.1, \mathrm{p}=0.5, \beta=1, \tau=10 \\
& \text { (d) } \\
& \text { (e) } \\
& P_{\mathrm{F}, \mathrm{R}}\left(W_{\mathrm{F}, \mathrm{R}}\right) \sim \frac{1}{\sigma_{\mathrm{F}, \mathrm{R}}} g_{\mathrm{F}, \mathrm{R}}\left(\frac{W_{\mathrm{F}, \mathrm{R}}-\left\langle W_{\mathrm{F}, \mathrm{R}}\right\rangle}{\sigma_{\mathrm{F}, \mathrm{R}}}\right) g_{\mathrm{F}}(x)=g_{\mathrm{R}}(-x)
\end{aligned}
$$

Hatano-Sasa distribution

