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Hatano-Sasa, Jarzynski and Crooks

Protocol {λ(t)}0≤t≤τ ;λ(0) ≡ λ1, λ(τ) ≡ λ2}

Y ≡
∫ τ

0
dt

dλ(t)

dt

∂Φ

∂λ
(C(t), λ(t)) Φ(C, λ) ≡ − ln ρss(C;λ)

Y is dissipated work.

〈e−Y 〉 = 1.

〈e−βW 〉 = e−β∆F ,

PF(WF)

PR(−WF)
= eβ(WF−∆F ).



Fluctuation theorems: Nonequilibrium work relations

Gas-piston setup with N ∼ 1023 particle (Macroscopic). The piston is
rapidly pushed into the gas and then pulled at the initial position (work is
positive if done against the system)

W > 0

Microscopically (in a gas with few particles), we could observe W < 0,
but, on average

〈W 〉 > 0

The second principle can be formulated as an equality (Jarzynski)

〈e−W/(kBT )〉 = 1

If the piston is manipulated in a time symmetric manner (Crooks)

P(W )

P(−W )
= eW/(kBT )



Protocol

t = 0 [λ = A,T ] equilibrium → t = τ λ = B non equilibrium

→ t = τ∗ [λ = B,T ] equilibrium

No external work is done on the system in the time interval
τ < t < τ∗.
Clausius inequality (Second Law of Thermodynamics)

W ≥ ∆F = FB,T − FA,T

where F is the Helmholtz free energy. When the parameter λ is
varied slowly (adiabatic transformation) W = ∆F .

Important: Fluctuation theorems are valid also when
the system is isolated after it is equilibrated at time
t = 0.



Microscopic model

H(x;λ) =
3∑

i=1

p2
i

2m
+

3∑
i=0

U(zk+1 − zk)

where x = (z1, z2, z3, p1, p2, p3) and the boundary conditions are
z0 = 0, z4 = λ(t)

W =

∫
dW =

∫ B

A
dλ
∂H

∂λ
(x, λ) =

∫ t

0
dtλ̇

∂H

∂λ
(x(t), λ(t))

H(x, y, λ) = H(x;λ) + Henv (y) + Hint(x, y)



Boltzmann-Gibbs distributions
If the interaction with the bath Hint is sufficiently weak

peqλ,T (x) =
1

Zλ,T
exp [−H(x;λ)/(kBT )] , Zλ,T =

∫
dx exp [−H(x;λ)/(kBT )]

If Hint is instead ”large”

peqλ,T ∝ exp (−H∗/kBT ) , H∗ (x;λ) = H (x;λ) + φ(x,T )

where φ(x,T ) is the free-energy cost of inserting the system into the thermostat.
The free energy associated with the equilibrium state is

Fλ,T = −kBT lnZλ,T

For a ”swarm” of independent trajectories (x1(t), x2(t), . . ., (0 < t < τ) one can
compute the corresponding work W1,W2, . . ., and determine the distribution
P(W ), which must respect

〈W 〉 =

∫
dWP(W )W ≥ ∆F = FB,T − FA,T



Proof of Jarzynski for an isolated system
After preparing the system in the initial equilibrium state, we disconnect it from
the environment and perform work by varying λ from A to B. The statistics of
work is determined by the statistics over the initial state

〈e−W/(kBT )〉 =

∫
dx(0)peqA,T (x(0))e−W/(kBT )

Since dH

dt
= ∂H

∂t , the work is given by

W = H(x(τ),B)− H(x(0),A)

Changing variables from initial to final

〈e−W/(kBT )〉 =
1

ZA,T

∫
dx(τ)|∂x(τ)/∂x(0)|−1 exp (−H(x(τ);B)/(kBT ))

Using Liouville theorem |∂x(τ)/∂x(0)| = 1, one finally gets

〈e−W/(kBT )〉 =
ZB,T

ZA,T
= e−(FB,T−FA,T )/(kBT )



A stochastic model of long-range interacting particles
N interacting particles (i = 1, 2, . . . ,N) moving on a unit circle,
with angles θ1.
Microscopic configuration

C = {θi ; i = 1, 2, . . . ,N}
The particles interact via the potential

V(C) =
K

2N

N∑
i ,j=1

[1− cos(θi − θj)]

K = 1 in the following. External fields hi

Vext(C) =
N∑
i=1

hi cos θi

The fields hi ’s may be considered as quenched random variables
with a common distribution P(h).
The net potential energy is therefore

V (C) = V(C) + Vext(C)



The stochastic dynamics
All particles sequentially attempt to move backward (forward) on
the circle

θi → θ′i = θi + fi with probability p

θi → θ′i = θi − fi with probability q=1-p

The fi are quenched random variables, each particles carries its
own fi .
However, particles effectively take up the attempted position with
probability g(∆V (C))∆t

∆V (C) = (1/N)
N∑
j=1

[− cos(θ′i−θj)+cos(θi−θj)]−hi [cos θ′i−cos θi ]

g(z) = (1/2)[1− tanh(βz/2)]

Overdamped motion of particles in contact with a heat-bath at
inverse temperature β and in presence of an external field. For
p 6= q the particles move asymmetrically under the action of an
external drive.



Master equation in continuous time
P = P({θi}; t) be the probability to observe the configuration C = {θi} at time t
and take the limit ∆t → 0

∂P

∂t
=

N∑
i=1

[
+P(. . . , θi − fi , . . . ; t)pg(∆V (C[(θi − fi )→ θi ])) +

+P(. . . , θi + fi , . . . ; t)qg(∆V (C[(θi + fi )→ θi ]))−

−P(. . . , θi , . . . ; t)
{
pg(∆V (C[θi → (θi + fi )])) + qg(∆V (C[(θi )→ (θi − fi )]))

}]
At long times, the system settles into a stationary state Pst({θi}).

I Equilibrium: For p = 1/2, the particles move in a symmetric
manner. The system has an equilibrium stationary state
Peq({θi}) ∝ e−βV ({θi}). Detailed balance is satisfied.

I Non Equilibrium: For p 6= 1/2, the particles have a preferred
direction, The system at long times settles into a nonequilibrium
stationary state, characterized. Detailed balance is violated leading
to nonzero probability currents in phase space.



Fokker-Planck limit and Langevin equation
We assume that fi � 1 ∀ i . Taylor expanding in powers of fi ’s and
retaining terms up to second order

∂P

∂t
= −

N∑
i=1

∂Ji
∂θi

,

where the probability current Ji for the i-th particle is given by

Ji =
[
(2p − 1)fi +

f 2
i β

2

( 1

N

N∑
j=1

sin ∆θji + hi sin θi
)]

P − f 2
i

2

∂P

∂θi
.

The corresponding Langevin equation is

θ̇i = (2p − 1)fi +
f 2
i β

2

( 1

N

N∑
j=1

sin(θj − θi ) + hi sin θi
)

+ fiηi (t),

where ηi (t) is a random noise with

〈ηi (t)〉 = 0, 〈ηi (t)ηj(t
′)〉 = δijδ(t − t ′).



Equilibrium vs. non equilibrium

I Equilibrium: For p = 1/2 the system settles into an
equilibrium stationary state Peq({θi}) which makes Ji = 0
individually for each i .

I Non Equilibrium: For p 6= 1/2, the system reaches a
non-equilibrium stationary state. However, in the special case
when the jump length is the same for all the particles and
there is no external field (fi = f and hi = 0∀ i), one may
make a Galilean transformation, θi → θi + [(2p − 1)f /2]t, so
that in the frame moving with the velocity [(2p − 1)f /2], the
Langevin equation takes a form identical to the one for
p = 1/2, and the stationary state has again the equilibrium
measure Peq({θi}).



The N →∞ limit and the single-particle distribution
In the thermodynamic limit N →∞ with hi = h, let us introduce the
single-particle distribution ρ(θ; f , t), the density of particles with jump length f
which are at location θ on the circle at time t. ρ is periodic
ρ(θ; f , t) = ρ(θ + 2π; f , t) and normalized∫ 2π

0

dθ ρ(θ; f , t) = 1 ∀ f .

In terms of ρ(θ; f , t), the Langevin equation reads

θ̇ = (2p − 1)f +
f 2β

2

(
my cos θ −mx sin θ + h sin θ

)
+ f η(t),

where

(mx ,my ) =

∫
dθdf (cos θ, sin θ)ρ(θ; f , t)P(f ),

and
〈η(t)〉 = 0, 〈η(t)η(t ′)〉 = δ(t − t ′).

This stochastic dynamics is very similar to the one of the Sakaguchi model.



Work distributions for homogeneous state
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Work distributions for inhomogeneous state
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Hatano-Sasa distribution
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