Systems out-of-equilibrium: fluctuation relations
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Hatano-Sasa, Jarzynski and Crooks

Protocol {)\(t)}OStST; /\(0) = A1, )\(7') = AQ}

Y = /OTdt d)(;gt)gi(C(t),A(t)) O(C,\) = — In ps(C; \)

Y is dissipated work.



Fluctuation theorems: Nonequilibrium work relations

Gas-piston setup with N ~ 10?3 particle (Macroscopic). The piston is

rapidly pushed into the gas and then pulled at the initial position (work is
positive if done against the system)

W >0

Microscopically (in a gas with few particles), we could observe W < 0,
but, on average
(W) >0

The second principle can be formulated as an equality (Jarzynski)

<efW/(ksT)> -1

If the piston is manipulated in a time symmetric manner (Crooks)

P(W) — W/(ksT)




Protocol

t=0[A=AT] equilibrium — t =7\ = Bnon equilibrium
— t=71"[A= B, T]equilibrium
No external work is done on the system in the time interval

Tt< TR
Clausius inequality (Second Law of Thermodynamics)

W>AF =Fg 1 —Far

where F is the Helmholtz free energy. When the parameter X is
varied slowly (adiabatic transformation) W = AF.

Important: Fluctuation theorems are valid also when
the system is isolated after it is equilibrated at time
t=0.



Microscopic model

Position, 1

Fixed wall

3 3
H(x; \) = Z Py Z U(zk41 — 2k)

where x = (z1, z2, z3, p1, P2, p3) and the boundary conditions are
z0=0, z4 = )\(t)

B oH t .OH
W_/dW_/A d/\a/\(x,)\)_/o ath S () A1)

H(X, Yy, )\) = H(X; A) + Henv(Y) + Hint(X7 Y)



Boltzmann-Gibbs distributions
If the interaction with the bath H,, is sufficiently weak

p3ir(x) = ZAlTexp [-H(x; A)/(ksT)] , Zn1 :/dxexp [—H(x;A)/(ks T)]

If Hjnt is instead " large”
Py ocexp(=H"/kgT) , H* (x;A) = H(x; \) + ¢(x, T)

where ¢(x, T) is the free-energy cost of inserting the system into the thermostat.
The free energy associated with the equilibrium state is

F,\7T = —kBTIn Z)\7T

For a "swarm” of independent trajectories (x1(t),x2(t),..., (0 < t < 7) one can
compute the corresponding work Wy, Wh, ..., and determine the distribution
P(W), which must respect

(W) = /dWP(W)W >AF=Fgr—Far



Proof of Jarzynski for an isolated system
After preparing the system in the initial equilibrium state, we disconnect it from
the environment and perform work by varying A from A to B. The statistics of
work is determined by the statistics over the initial state

(e~ W/aT)y = / dx(0)pS (x(0))e /(e T)

Since Cé” = at , the work is given by

W = H(x(7), B) — H(x(0), A)
Changing variables from initial to final

(e 10T) = [ ax(r)]ox(r)/Ox(O)| " exp (- Hix(r); B)/ (e )
AT
Using Liouville theorem |0x(7)/0x(0)| = 1, one finally gets

<67W/(kBT)> _ BT — e (Fe,r—=Far)/(ksT)
ZaT



A stochastic model of long-range interacting particles
N interacting particles (i = 1,2,..., N) moving on a unit circle,
with angles 6.

Microscopic configuration

c={0;i=1,2,... N}

The particles interact via the potential

Kk N
V(€)= oy Zl[l — cos(0; — 6,)]
)=
K =1 in the following. External fields h;

N
Vext(C) = Z h; cos 0;
i=1

The fields h;'s may be considered as quenched random variables
with a common distribution P(h).
The net potential energy is therefore

V(C) = V(C) + Vext(C)



The stochastic dynamics

All particles sequentially attempt to move backward (forward) on
the circle

0; — 0) = 0; + f; with probability p
0; — 0} = 0; — f; with probability q=1-p

The f; are quenched random variables, each particles carries its
own f;.
However, particles effectively take up the attempted position with
probability g(AV/(C))At

N
AV(C) = (1/N) Z[— cos(0; — ;) +cos(6; —6;)] — hi[cos 0; — cos 6;]

j=1

8(z) = (1/2)[1 — tanh(5z/2)]
Overdamped motion of particles in contact with a heat-bath at
inverse temperature 5 and in presence of an external field. For

p # q the particles move asymmetrically under the action of an
external drive.



Master equation in continuous time
P = P({6;}; t) be the probability to observe the configuration C = {6;} at time t
and take the limit At =0

P &

2|

+P(...,0; —fi,...;t)pg(AV(C[(0; — ;) — 6]])) +
+P(.. 0+ fi s t)qg(AV(C[(0: + fi) — 0i])) —

~P( 05 )| PR(AVICIO — (6 + YD) + ag(AV(CL©:) — (6 — B))}]

At long times, the system settles into a stationary state Py ({6;}).

>

Equilibrium: For p = 1/2, the particles move in a symmetric
manner. The system has an equilibrium stationary state
Peq({6:}) oc e=#VUO}) | Detailed balance is satisfied.

Non Equilibrium: For p # 1/2, the particles have a preferred
direction, The system at long times settles into a nonequilibrium
stationary state, characterized. Detailed balance is violated leading
to nonzero probability currents in phase space.



Fokker-Planck limit and Langevin equation

We assume that f; < 1V i. Taylor expanding in powers of f;'s and
retaining terms up to second order

where the probability current J; for the i-th particle is given by

Ji = [(Qp—l)ﬁ+f22ﬁ< ZgnA@—khsmH)] f’;gg

The corresponding Langevin equation is

=(2p

( Zsm )+ h; sm@) + fimi(t),

where 7;(t) is a random noise with

mi()) =0, (mi(t)n;(t)) = d56(t — t').



Equilibrium vs. non equilibrium

» Equilibrium: For p = 1/2 the system settles into an
equilibrium stationary state Peq({#;}) which makes J; =0
individually for each i.

» Non Equilibrium: For p # 1/2, the system reaches a
non-equilibrium stationary state. However, in the special case
when the jump length is the same for all the particles and
there is no external field (fi = f and h; =0V i), one may
make a Galilean transformation, 6; — 0; + [(2p — 1)f /2]t, so
that in the frame moving with the velocity [(2p — 1)f /2], the
Langevin equation takes a form identical to the one for
p = 1/2, and the stationary state has again the equilibrium
measure Pey({60i}).



The N — oo limit and the single-particle distribution

In the thermodynamic limit N — oo with h; = h, let us introduce the
single-particle distribution p(0; f, t), the density of particles with jump length f
which are at location 6 on the circle at time t. p is periodic

p(0; f,t) = p(6 + 2m; f, t) and normalized

2w
/ do p(6;f,t) =1 ¥ f.
0

In terms of p(6; f, t), the Langevin equation reads

. 2 . .
0= (2p—1)f + T(mycosﬁ — mysinf + hsin 9) + fn(t),

where
(my, my) = /df)df (cos®,sin@)p(0; f, t)P(f),

and
() =0, (n(t)n(t)) =d(t—1t).

This stochastic dynamics is very similar to the one of the Sakaguchi model.



Work distributions for homogeneous state
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Work distributions for inhomogeneous state
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Hatano-Sasa distribution

N=500,f=0.1,p=0.55
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