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Citation from the book of Kerson Huang

There seems to be little hope that we can
straightforwardly carry out the recipe of the
microcanonical ensemble for any system but
the ideal gas.



Law of large numbers

Consider a sample of N independent, identically distributed (i.i.d.)
random variables

x1, x2, . . . , xN

with PDF f (x) and expectation µ: < x >=
∫
f (x)xdx = µ

Then, the sample mean

XN =
1

N

N∑

i=1

xi

converges to µ almost surely

Prob

{
lim

N→∞
XN = µ

}
= 1



Central limit theorem
Consider a function g(x) of the random variable x and the sample
mean

GN =
1

N

N∑

i=1

g(xi )

Define

tN =
GN− < g(x) >√

var {GN}
=

√
N(GN− < g(x) >)√

var{g(x)}
Then (σ2 = var{g})

lim
N→∞

Prob{a < tN < b} =

∫ b

a

exp[−t2/2]√
2π

dt

f (GN) =
1√

2π(σ2/N)
exp

[
N(GN− < g >)2

2σ2

]



Coin tossing and large deviations

Xk = ±1 , SN =
1

N

N∑

k=1

Xk

P(SN = x) =
N!

N+!N−!2N
=

N!(
(1+x)N

2

)
!
(
(1−x)N

2

)
! 2N

Using the Stirling’s formula in the large N limit

lnP(x) ∼ −N
(

(1 + x)

2
ln (1 + x) +

(1− x)

2
ln (1− x)

)
∼ −NI (x)

The rate function I (x) has a single minimum in x = 0, the most
probable value and is in this case symmetric around the minimum.
SN fulfills a large deviation principle, characterized by the rate
function I (x).
The coin toss experiment can be thought as a microscopic
realization of a chain of N non-interacting Ising spins. I (x)
corresponds to the opposite of the Boltzmann entropy of a
macrostate characterized by a fraction x of up-spins.



Cramèr’s theorem
Let X ∈ Rd be a random variable with given PDF and
Xi ,i = 1, . . . ,N, a sample of X.
Let MN = 1

N

∑
i Xi be sample mean

Which is the PDF of the sample mean? (Cramèr)
Compute the generating function

Ψ(λ) =< exp(λ · X) >,

with λ ∈ Rd and the average < · > performed on the PDF of X If
Ψ(λ) <∞ and differentiable, then

P(MN = x) ∼ exp(−NI (x))

where the rate function I (x) is given by the Legendre-Fenchel
transform of ln(Ψ(λ))

I (x) = sup
λ∈Rd

(λ · x− ln(Ψ(λ)))



Unbiased/Biased coin tossing using Cramèr
I Unbiased: dµ = [δ(X − 1) + δ(X + 1]dX/2;

Ψ(λ) = 〈exp(λX )〉 = coshλ; I (x) = supλ (λ · x − ln coshλ),
whose critical point is λ = arcth x .

I Biased: dµ = [(1− α)δ(X − 1) + αδ(X + 1]dX , with
α ∈ [0, 1] and α = 1/2 corresponding to the unbiased case;
Ψα(λ) = exp(λ)− 2α sinhλ. Iα(λ) is plotted in the figure for
α = 1/3, 1/2, 2/3. This model corresponds to an ensemble of
non-interacting Ising spins whose probability to take the upper
value is different from the one for the down value.



Entropy and free energy
Step 1 Express the Hamiltonian in terms of global variables γ

HN(ωN) = H̃N (γ(ωN)) + RN(ωN)

(ωN a phase-space configuration) leading to
h(γ) = limN→∞H̃N (γ(ωN)) /N.
Step 2 Compute the entropy functional in terms of the global
variables using, e.g., Cramèr’s theorem

s(γ) = lim
N→∞

1

N
ln ΩN(γ)

with ΩN(γ) the number of microscopic configurations with fixed γ.
Step 3 Solve the microcanonical and canonical variational
problems

s(ε) = sup
γ

(s(γ) | h(γ) = ε) ,

βf (β) = inf
γ

(βh(γ)− s(γ))



Potts model-I

HPotts
N = − J

2N

N∑

i ,j=1

δSi ,Sj .

Si = a, b, c
Step 1

H̃Potts
N = −JN

2
(n2a + n2b + n2c)

Step 2

γ =

(
1

N

∑

i

δSi ,a,
1

N

∑

i

δSi ,b,
1

N

∑

i

δSi ,c

)
.

Local random variables

Xk = (δSk ,a, δSk ,b, δSk ,c)



Potts model-II
Generating function

Ψ(λa, λb, λc) =
1

3

∑

S=a,b,c

(
eλaδS,a+λbδS,b+λcδS,c

)

=
1

3

(
eλa + eλb + eλc

)

Rate function

I (γ) = sup
λa,λb,λc

(λana + λbnb + λcnc − ln Ψ(λa, λb, λc)) .

Exact solution λ` = ln n`, with ` = a, b, c

I (γ) = na ln na + nb ln nb + (1− na − nb) ln(1− na − nb) + ln 3

Entropy
s(γ) = −I (γ) + lnN

where the normalization factor is N = 3



Potts model-III
Step 3
Microcanonical entropy

s(ε) = sup
na,nb

(
−na ln na − nb ln nb − (1− na − nb) ln(1− na − nb)

∣∣∣−J

2

(
n2a + n2b + (1− na − nb)2

)
= ε
)

Canonical free energy

βf (β) = inf
na,nb,nc

(
na ln na + nb ln nb + nc ln nc −

βJ

2

(
n2a + n2b + n2c

))



Generalized XY model

HXY =
N∑

i=1

p2i
2
− J

2N
(

N∑

i=1

~si )
2− K

4N3

[
(

N∑

i=1

~si )
2

]2
, ~si = (cos θi , sin θi )

0

ϵm ̸= 0 m = 0

ϵc = 3/4

m = | 1
N

∑N
j=1 eiθj|

i

θi



Entropy of XY model
Step 1 Global variables

γ = (mx ,my , EK ) with EK = lim
N→∞

∑

i

p2i /N

h(γ) =
1

2

(
EK − Jm2 − Km4/2

)

Step 2

X =
(
cos θ, sin θ, p2

)
Local random variable

Ψ(λ) ' I0(
√
λ2x + λ2y )/

√
−λK where λ = (λx , λy , λK )

I (γ) = −s(γ) = sup
λ

(λKEK + λxmx + λymy +

+ ln(−λK )/2− ln(I0(
√
λ2x + λ2y )))

Step 3 Entropy

s(ε) = sup
γ
{s(γ) | EK = 2ε+ Jm2 + Km4/2)}



Phase diagram and caloric curves
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I At K/J = 0 (HMF model), second order phase transition at
T/J = 0.5. Ensembles are equivalent.

I For K/J < 1/2 ensembles are inequivalent. Negative specific
heat for 1/2 < K ≤ 5/2; Temperature jumps for K > 5/2.

I Right figure shows the caloric curve for K/J = 10. The points
are results of a molecular dynamics simulation with N = 100



Free Electron Laser

gun

electron accelerator S N S N

N S N S

magnets

Colson-Bonifacio model

dθj
dz

= pj

dpj
dz

= −Ae iθj − A∗e−iθj

dA

dz
= iδA +

1

N

∑

j

e−iθj



Microcanonical solution
Hamiltonian

HN =
N∑

j=1

p2j
2
− NδA2 + 2A

N∑

j=1

sin(θj − ϕ)

where A =
√
AA∗.

Entropy

s(ε, σ, δ) = sup
A,m

[
1

2
ln

[
2

(
ε− σ2

2

)
+ 4Am + 2(δ − σ)A2 − A4

]
+sconf (m)

]

where m =
√
m2

x + m2
y , mx =

∑
i cos θi/N, my =

∑
i sin θi/N, σ

is the total average momentum
∑

i pi/N + A2 and

sconf (m) = − sup
λ

[λm − ln I0(λ)]

Ensembles are equivalent for this model. There is a second order
phase transition at ε = −1/(2δ), δ < 0.



Time relaxation of the laser intensity
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N = 5000 (curve 1), N = 400 (curve 2), N = 100 (curve 3)
On a first stage the system converges to a quasi-stationary state.
Later it relaxes to equilibrium on a time O(N). The
quasi-stationary state is a Vlasov equilibrium, sufficiently well
described by Lynden-Bell’s distributions.



Mean-field φ4 model

H =
N∑

i=1

(
p2i
2
− 1

4
q2i +

1

4
q4i

)
− 1

4N

N∑

i ,j=1

qiqj .

Global variables

u =
1

N

N∑

i=1

p2i , z =
1

4N

N∑

i=1

(q4i − q2i ) , m =
1

N

N∑

i=1

qi

ln Ψ(λu, λz , λm) = − lnλu
2

+ln

∫
dq exp(−λmq−λz(q4−q2))+const

s(u, z ,m) = inf
λu ,λz ,λm

(λuu + λzz + λmm − ln Ψ)

s(ε,m) = sup
u,z

(s(u, z ,m)|ε =
u

2
+ z − m2

4
)



Entropy of the mean-field φ4 model



Negative susceptibility
Thermodynamics first law for magnetic systems TdS = dE − hdM.
In the microcanonical ensemble

h(ε,m) = − ∂s
∂m

/
∂s

∂ε
= − 1

β(ε,m)

∂s

∂m
.

In the canonical ensemble

f (β, h) = inf
ε,m

[
ε− hm − 1

β
s(ε,m)

]
.

which gives ∂s/∂m = −hm, ∂s/∂ε = β, in agreement with the
microcanonical expressions for h and β.

χ =
∂m

∂h
= β

sεε
s2εm − sεεsmm

In the canonical ensemble sεε > 0 and the denominator is positive
as a consequence of stationarity, hence χ > 0. In the
microcanonical ensemble smm < 0 and, at free energy saddles,
sεε < 0, hence susceptibility can be negative.



Comparison with numerics



Conclusions

I Large deviations are a powerful tool to derive microcanonical
entropies.

I Examples: Potts model, generalized XY model,
Colson-Bonifacio model of the free electron laser, φ4 theory


