Gamma Ray Bursts fabrizio.fiore@inaf.it

IFPU February 10 2023

GRB light curves

- 60 50 τ. 10³ Counts/Seco 10 01 -2
- τ 5 30 2 Ę 20ő °p 10

40

- 0 -5 80
- 60 40 8 "<u>b</u> 20

0

- 30) E 25 10³ Counts/Se 20 15
 - 10 Ľ -10

8000 F

t(s)

t(s)

t(s)

t(s)

t(s)

t(s)

Constellation of 6+6 satellites carrying simple X-ray scintillators detectors. 10⁵ km orbit.

Constellation of 6+6 satellites carrying simple X-ray scintillators detectors. 10⁵ km orbit.

Detect y-rays from nuclear explosions

Constellation of 6+6 satellites carrying simple X-ray scintillators detectors. 10⁵ km orbit.

Detect y-rays from nuclear explosions

First launch 1963 Last Advanced Vela launch 1970 In operation till 1985

Constella simple Xorbit.

1500

1000

500

-2

Detect v

First launc Last Adva In operation

CGRO/BATSE

CGRO/BATSE

8 Nal(TI) scintillators at the 8 corners of the spacecraft each ~2000cm² collecting area Best temp. resolution 2µs (TTM)

CGRO/BATSE

8 Nal(TI) scintillators at the 8 corners of the spacecraft each ~2000cm² collecting area Best temp. resolution 2µs (TTM)

> Position accuracy a few-several deg

CGRO/BATSE 2704 BATSE Gamma-Ray Bursts

 \cap

BeppoSAX observation of GRB970228 field

9 29 73 5 g 10

28/02/97 WHT 08/03/97 - M dwarf M dwarf

BeppoSAX observation of GRB970228 field

10

Detected and localised to a several arcmin by BSAX/WFC

28/02/97 WHT 0 4 9 29 73 1 5 9 0 8/03/97

BeppoSAX observation of GRB970228 field

BeppoSAX observation of GRB970228 field

10

10

M dwarf

BeppoSAX observation of GRB970228 field

Detected and localised to a several arcmin by BSAX/WFC

Satellite repointed and field observed with X-ray telescopes 8hr after the event 8

-11°36'00" 250 300 350 400 200 250 300 X Pixels X Pixels 73 10 29 28/02/97 WHT 08/03/97 - M dwarf M dwarf

BeppoSAX observation of GRB970228 field

10

Detected and localised to a several arcmin by BSAX/WFC

Satellite repointed and field besoved with X-ray telescopes 8hr after the event

Discovery of first X-ray afterglow. <1arcmin position disseminated

BeppoSAX observation of GRB970228 field

BeppoSAX observation of GRB970228 field

10

10

Midwarf

GRB970228 BeppoSAX observation of GRB970228 field BeppoSAX observation of GRB970228 field Detected and localised to a 1997 Feb 28 Exposure: 14334 s SAX MECS 1997 Mar 3 Exposure: 16272 s 5^h02^m09^s 5^h01^m42^s 5^h01^m15^s 5^h02^m36^e 5^h02^m09^e 5^h01^m42^e 5^h01^m15^e several arcmin by BSAX/WFC emin i Satellite repointed and field '48'0**╬** |°42'00'

observed with X-ray telescopes 8hr after the event 11°36'00'

Discovery of first X-ray afterglow. <1arcmin position disseminated

Discovery of first optical afterglow

250 300 350 200 250 300 400 X Pixels X Pixels 28/02/97 WHT 08/03/97

M dwar

-12°00'00"

-11°54'00'

-11°48'00'

-11°42'00'

-11°36'00"

350

Midwarf

T (arcmln) $\Delta \delta_{2\,0\,0\,0}$

Liso~1052 erg/s

Burst

were smoothed with a Gaussian with a $\sigma = 5$ Å, roughly corresponding to the instrumental resolution. Prominent emission lines are labeled.

Z=0.835

Wavelength

 λ , Angstroms

A flash in the dark: GRB and high-z galaxies cosmic blasts spotting distant galaxies

Gamma-Ray Burst Duration vs. Energy Spectrum

Jet Signatures

Piran, Science, 08 Feb 2002

$$\theta_b \propto \left[\frac{n_o \eta_{\gamma}}{E_{\gamma,iso}}\right]^{1/8} \begin{bmatrix} t_{break} \\ 1+z \end{bmatrix}^{3/8}$$

al. (2001) Stanek et

Energy and Beaming Corrections

- The dispersion in isotropic GRG energies results from a variation in the opening (or viewing) angle
- The mean opening angle is about 4 degrees (i.e. $\langle f_b^{-1} \rangle \sim 500$)
- Geometry-corrected energies are narrowly clustered $(1\sigma=2x)$

$$\langle E_{\gamma} \rangle = 5 \times 10^{50} \text{ erg}$$

(for $n_o = 0.1 \text{ cm}^{-3} \text{ assumed}$)

Frail et al. (2001)

Sudden bursts of soft γ-rays up to 10⁻³ ergs/s/cm² (μW/m²)

Time in Seconds

Sudden bursts of soft γ-rays up to 10⁻³ ergs/s/cm² (μW/m²)

Time in Seconds

Sudden bursts of soft y-rays up to 10^{-3} ergs/s/cm² (μ W/m²)

Time in Seconds

Sudden bursts of soft γ-rays up to 10⁻³ ergs/s/cm² (μW/m²)

Time in Seconds

Progenitor Long GRBs: Collapsar model M>30 M_• Very rough overview

- The core of a rotating massive star collapses to a black hole.
- Material far from the axis does not fall straight in, but forms an accretion disk first.
- Dissipative effects in the disk convert kinetic energy into heat.
- Energy deposited over the poles of the disk powers jets.

The progenitor star

- Mass: $> 30 M_{\odot}$
 - Lifetime: 4 7 million years
 - Wolf-Rayet star, \approx 300000 km in radius
 - Helium core > $12 M_{\odot}$
 - Iron core > $2 M_{\odot}$
- Rapidly rotating, $\approx 200 \text{ km/s}$ at the surface

It will lose its hydrogen envelope through stellar winds, forming a

Modelli per un GRB

Modelli per un GRB

Modelli per un GRB

The compactness problem

•Cosmological sources (D~3 Gpc) L_g~ fD²~10⁵² erg/s **R** of our galaxy ~ 30 kpc: extragalactic objects $e_{q1} e_{q2} (m_e c^2)^2 \gamma \gamma \rightarrow e^+ e^-$

t_{gg}~
$$\zeta_p R_0 n_g \sigma_T \sim \sigma_T L_g / 4\pi R_0 c e_g \sim 10^{15}$$

on of photons above
eshold of pair
 $\sigma_T = 6.25 \times 10^{-25} cm^2$

 ζ_p fractio the there production

Optical depth t

- Dt ~ 1-10 ms \longrightarrow Compact sources $R_0 \sim c Dt \sim 3 10^7 cm$

$$gg(\gamma\gamma \rightarrow e^+e^-) >>1$$

Beaming hypothesis

$$l_{\gamma} = \frac{L\sigma_{\tau}}{Rn_{e}c^{3}} \ge 1000$$

but.. if $l_{\gamma} \ge 60\gamma$ - ray cannot
excape, because they interact
with X - ray photons to make
 $e^{+} e^{-}$ couples

Doppler boosting

- $\delta = 1/\gamma \left(1 \beta \cos\theta\right)$
- • $\Delta t_{obs} = \Delta t / \delta$
- •light aberration $v_{obs} = \delta v$
- $I_{v} / v^{3} \text{ is relativistic invariant } I_{vobs} = \delta^{3} I_{v}$ $F_{vobs} = F_{v} \delta^{3+\alpha} \quad F_{bolobs} = F_{bol} \delta^{4}$ $\frac{\Delta F_{obs}}{\Delta t_{obs}} = \delta^{5} \frac{\Delta F}{\Delta t}$ $l = \frac{L_{x} \sigma_{T}}{Rm_{e} c^{3}} \quad R \sim \delta c \Delta t \quad l = \delta^{-5} \frac{L_{obs}}{\Delta t_{obs}} \frac{\sigma_{T}}{m_{e} c^{4}}$

The Fireball Model

Relativistic Particles Γ>100 or Poynting flux

compact[/]source ~ 10⁷ cm

Goodman; Paczynski; Narayan, Paczynski & Piran; Shemi & Piran, Meszaros & Rees

The Fireball Model

Relativistic Particles Γ>100 or Poynting flux

compact/source ~ 10⁷ cm

Goodman; Paczynski; Narayan, Paczynski & Piran; Shemi & Piran, Meszaros & Rees Shocks

The Fireball Model

Relativistic Particles Γ>100 or Poynting flux

compact[/]source

~ 10⁷ cm

Goodman; Paczynski; Narayan, Paczynski & Piran; Shemi & Piran, Meszaros & Rees

rays

Shocks

The Lorentz factor

The Lorentz factor

- As the fireball shell expands, the baryons will be accelerated by radiation pressure.
- The fireball bulk Lorentz factor increases linearly with radius.
- $\Gamma_0 \sim \eta = E/M_0 c^2$, M_0 total baryon mass of the fireball

Internal Shocks Shocks between different shells of the ejected relativistic matter

- $dT = R/cg^2 = d/c \sim$ $\sim D/c=T$
- The observed light curve \bigcirc reflects the activity of the "inner engine". → <u>Need TWO</u> time scales.
- To produce internal shocks the source must be active and highly variable over a "long" period.

Inner Engine

Inner Engine

Relativistic Wind

Inner Engine

Relativistic Wind

Inner Engine

Relativistic Wind

Inner Engine

Relativistic Wind

Internal Shocks

Inner Engine

Relativistic Wind

γ-rays

Internal Shocks

Inner Engine

Relativistic Wind

γ-rays

Internal Shocks

The Internal-External Fireball Model γ-rays Afterglow

Inner Engine

Relativistic Wind

Internal Shocks

External Shock

The Internal-External Fireball Model γ-rays Afterglow

InnerRelativisticEngineWind

There are no direct observations of the inner engine. The γ -rays light curve contains the best evidence on the inner engine's activity.

Internal Shocks

External Shock

The internal/external shock scenario

[Rees & Meszaros 1992, '94]

The radiation mechanisms

For each collision:

Light curves from internal shocks

emission from multiple shocks in a relativistic wind

 Δt (interval between ejected shells) determines the pulse duration and separation:

the pulse (t_p) and the subsequent interval (Δt_p)

- Rapid variability and complexity of GRB lightcurves result of
- IS reproduce the observed correlation between the duration of
- Numerical simulations reproduce the observed light curves

0 0

GRB inner engine

2 shells ejected at t_1 , t_2 , speed Γ_1 , $\Gamma_2=a\Gamma_1$ will collide at R~2²L

 $\Delta t \sim L/c \sim R/2c\Gamma^2 \qquad R \sim 2\Gamma^2 c\Delta t \qquad R \sim (\Gamma/100)$ $(\Delta t/1ms) 6 \times 10^{11} cm$

 γ -rays from collision reach observer at the same time of hypothetical y-rays emitted at t₂

Observed light curves reproduce activity of inner engine (Nakar-Piran 2002)

GRB inner engine

8000 F

t(s)

t(s)

t(s)

t(s)

t(s)

t(s)

Nakar & Piran 2002

Nakar & Piran 2002

29

Fluence Butler