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Introduction: N-body chaos

N—body chaos as strong dependence of the initial conditions for
systems described by Hamiltonians of the type

N P N
H=3 g+ 2 V= gl)
i=1 J#i

when the number of degrees of freedom (particles) N is "large".
Quantified in terms of Lyapunov exponents.
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Introduction: Continuum limit

The dynamics of N—body gravitational systems, due to the
long-range nature of the 1/r? force, is principally dominated by
mean field effects rather than by inter-particle collisions for large N
(e.g. as in galaxies where N =~ 1012).

@ Due to the extremely large number of particles it is often
natural to idealize them in the continuum (N — oo, m — 0)
collisionless limit (particle behaves as a massless tracer) in
terms of the Collisionless Boltzmann (Vlasov) Equation for the
phase-space distribution f(r,v, t)

Oif +v-Vif + V.-V, f =0, (1)

e Poisson equation A®(r) = 47w Gp(r), where

o= [ ey @

—00
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Introduction: time scales

@ Free-fall dynamical time or crossing time
I's =
tdyn(xizl/\/cp
Vtyp

e Collisional lifetime (Chandrasekhar 1943 two body relaxation
time)
i N
(Gm)2nIn A log N

top X tayn for galaxies > ty ~ 13Gyrs

o CBE is valid until t < typ
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Single (massive) particle dynamics

The motion of a particle in a potential ® under the effect of
dynamical friction and fluctuating gravitational force is

d?r dr

where:

Y(r,v)

v3

n(r,v) = 47 G?>m(M+m)In A . W(r,v) = 47r/ f(r,v')v2dv'
0

and the fluctuating force Fyy is sampled from the Holtsmark (1911)
distribution

H(F) = %F /0 T exp [—a(g/F)W} gsin(€)d¢; a = %(27TGm)3/2
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Single (massive) particle dynamics
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Single (massive) particle dynamics
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Mga1 = 3 X 1012I\/l@, ~v=1.2, re =3 kpc, and a dark to visible
matter ratio of ~ 6, [parameters roughly corresponding to the case
of M87. We observe that over a time of 10 Gyrs the SMBH reaches
radii of the order of ~ 6 pc, that is compatible with the off-centre
displacement claimed for the SMBH of M87

Pierfrancesco Di Cintio N—body Chaos



The problem

e The CBE is and infinite dimensional (non-canonical)
Hamiltonian system with infinite conserve quantities: the
Casimir invariants

C(F,t) = /Q c(F)dpdq

where ¢ is any continuous differentiable function.

@ But we know from Celestial Mechanics for example that for
N > 3 the N—body problem becomes non-integrable with
more and more complex dynamics as N increases.
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The problem

@ Where is Chaos in the continuum (Vlasov) limit?

@ What about models that have non-integral mean filed
potentials in the continuum limit?

@ Is the continuum limit meaningful after all?

@ There are two points of view:

@ Self consistent N—body dynamics, or orbit in R® (in the sense
of analytical mechanics)

@ Collective properties of families of single particle orbits (in the
sense of Stellar/Celestial Dynamics)
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What was done, so far

Miller (1964,1971) concluded that gravitational N—body
simulations can not be idealized as a good representation of
collisionless systems due to the exponential (Miller instability)
growth of distances of nearby realizations
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What was done, so far
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"Collective relaxation time", (Gurzadyan & Savidy 1984,1986; Later
work of Pettini and collaborators, Gurzadyan & Kocharyan 2009)

1 W
lim —In (t)
t—oo t Wo

th X 1//\max ~ tdyan/3; Amax =

)



What was done, so far

° TypicaIIy tayn < ta < t2p.

@ tp was obtained with differential geometry arguments and the
statistics of gravitational field fluctuations (Holtsmark
distribution, Chandrasekhar & von Neumann 1942,1943), as a

quantity connected to discreteness effects rather than
collisions.

@ In a rather obscure paper Vesperini A& A 1992 suggested that
ta could be linked to a fast relaxation channel for GCs
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What was done, so far

Goodman, Heggie & Hut (1993) and Hemsendorf & Merritt (2002)
computed the instability growth rate
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What was done, so far
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What was done, so far

Numerical studies from the mid 90s focusing on tracer particles
suggested that A,y is either constant with N or slightly increasing
( Kandrup & collaborators 1995-2004). Individual particle orbits in
frozen potential resemble more and more their continuuum limit
counterparts as N increases
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What was done, so far
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What was done, so far

For models that admit chaotic (single particle) orbits in the
continuum limit:

@ Lyapunov exponents of tracer orbits increase with N

@ The range of the chaos associated to the global potential
decreases with N
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Discreteness effects in equilibrium models

In Di Cintio & Casetti MNRAS 2019, IAU proceedings 2019 we

integrate the equations of motion plus the variational equations

with 4rd order symplectic integrator and compute the finite time
Lyapunov exponents for different N at fixed density profile

N ri—r
Vi = sz —
=i =l
N
(wi —w;j) - (ri —1j) 1
w :—sz [(w —wj)—3(ri —rj)
' o A P [ R RIIE
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Self consistent anisotropic equilibrium models: Phase-space

distribution

For a spherically symmetric, non-rotating continuum density profile
p(r) with anisotropy radius r, and potential ®(r), the anisotropic
f(Q) depends only on the quantity Q@ = &£ + J2/2r2, where & is the
energy, J is the angular momentum via the Osipkov (1979) -
Merritt (1985) parametrization of the Eddington (1916) formula

1 d [@wdp, do
Q= 2516 /Q s (4)
r2
palr) =00 (14 %) (5)

This can be used to built, starting from a smooth p, N—body
realizations via standard rejection method.
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N-body chaos in stable equilibrium models

We compute the (numerical) maximal Lyapunov exponent with the
standard Benettin, Galgani & Strelcyn Phys.Rev.A (1976) method

as limit of kA
t
)= g R0

for large t, where W is the norm of the 6N dimensional vector

W = (w;, W;, ...wp, Wy ) for self consistent simulations and

W = (w,w) for a tracer in a frozen N—body model. d is the norm
att =20

Amax(t) - Foax (t)

| e=o0s
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N-body chaos in stable equilibrium models
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Central cusp leads to more chaos at large N. Flat core has a
remarkable N~=1/2 trend. €. has effect on the slope. N'/3 scaling
(Gurzdayan & Sawvidy 1986) cannot be excluded.
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N-body chaos in stable equilibrium models
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Strong energy dependence on N-scaling, Amax ~ N~1/2 for strongly
bound orbits
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N-body chaos in stable equilibrium models
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N-body chaos in stable equilibrium models
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N-body chaos in unstable equilibrium models

@ Collisionless equilibrium systems with a significant fraction of
the kinetic energy stored in low angular momentum orbits are
violently unstable. The amount of radial orbits is quantified by
introducing the Fridman-Polyachenko-Shukhman parameter

§= 2Tr/Tt7 (6)

as function of the radial and tangential components of the
(initial) kinetic energy T, and T;

@ For approximately £ > 1.5 Newtonian systems appear to be
unstable, leading to triaxial end-states.
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N-body chaos in unstable equilibrium models

@ Analytical stability results exist for the isotropic case. It is also
known that phase-space distribution functions with
df(€)/dE < 0 correspond to stable systems (Antonov 1968
theorem)

@ ROl is triggered by particles with orbital frequencies close to
satisfying the condition Qp = 2Q, — Q, ~ 0, where Q,, is the
azimuthal frequency, Q, the radial frequency and Qp the
precession frequency (Palmer 1985, Palmer & Papaloizou
1987)

© Once a small non-spherical density perturbation is formed in a
system dominated by low Qp orbits, it will grow more and
more, as more and more particles tend to accumulate to it.
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N-body chaos in unstable equilibrium models
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Anisotropy of parent f has little influence on Apax, though larger
systems are more triaxial in the end
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N-body chaos in unstable equilibrium models
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ody chaos in unstable equilibrium models

102 . . : . 102 . . . . 102 : . . .
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
iIN iN iN
T T T T T T
10° | E 10° i 1 10° Ef} E
o M‘\ e }‘ ‘"""» M - / M\. )l =
e BN W NN
§ W | ™ ‘\
Z10% L 4 10°F { 10°F W\Ih 1
\
102 | \ { w02} { 102 Egi‘{_g I \\
. . . A | £o=1.0 .
101 100 101 100 101 100
Am Am Am

Pierfrancesco Di Cintio N—body Chaos



Phase space diffusion

Tracers in self-consistent models diffuse. A is weakly dependent on
whether the model is "live or not"
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Phase space diffusion

The diffusion in phase-space is characterized by the emittance

€ = (exeye)Y3, € = \/<ri2)(v,-2) — (rivi)?,

where (...) indicate ensemble averages.
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o We verified the N1/3 scaling of the Gurzdayan-Savidy
relaxation scale

@ Orbits in frozen models and active self consistent models have
(obviously) different mixing properties and have, in general,
different maximal Lyapunov exponents. Ap.x depends more on
N in frozen systems.

@ ROl is not associated to N-body chaos but rather to individual
orbits Lyapunov times

@ The continuum limit might be valid below tp rather than
below typ
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Collisional vs collisionless N—body systems

In stellar dynamics one typically defines two time scales the
dynamical (or crossing) time tqy, and the two body relaxation time

3
I Vi N

When tp, > ty = 13 Gyrs the system is said to be collisionless (i.e.
the granular nature of the stellar distribution is effectively irrelevant
for the dynamics of individual stars) otherwise collisional

top:
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Collisional vs collisionless N—body systems

Only a sub-set of GCs are accessible with state-of-the-art honest
direct N—body
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How to model collisional & weakly collisional systems

o Direct force calculation, but time scales with O(/N?)
@ Fokker-Planck methods (Henon 1969)

@ Hybrid PIC-Montecarlo methods: Cartwright, Verboncoeur &
Birdsall, Phys.Plasm. 7, 3252 (2000); Vasiliev, MNRAS 446,
3150 (2015)

@ Hybrid Particle-Mesh Direct force cell by cell. (see Hockney &
Eastwood 1988)

@ Multi-particle collision scheme plus standard PIC or
particle-mesh (Di Cintio and collaborators 2015-2021)
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The multi-particle collision method

@ It actually comes from fluid dynamics: Malevanets & Kapral
J.Chem.Phys. 112, 7260 (2000)

@ Collision are stochastic but preserve total momentum, kinetic
energy and number of particles, i.e.:

P; —ijvjold—ZmJ‘Gnew_ZmJ(a’V‘/J+b)

N2 Ni 2 N

j old l Vj,new l (aiVVj + bi)2
-t 3 o )
2 2

J=1 J=1

@ It is a grid based method scaling as N log N
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The multi-particle collision method

The system is coarse-grained on a grid, then in each collision cell a
stochastic rotation of the velocity vectors takes place:

vi(t+At) = u;(t)+dv; | (t) cos(a)+(dv; 1 (t)x Ifi) sin(a)+dv; (1),

where R is a random axis and u the c.o.m. speed and

T e ey sin(a) = —2AB/(A? + B?)
(A* - B?)/(A* + B)
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standard propagation with second order Verlet scheme.
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MPCDSS

@ Long-range part of Gravitational interaction treated with
Particle-mesh or PIC (mean field)
@ Collisions implemented on the sub-mesh scale with MPC with

a cell-dependent collision probability (Bufferand, Ciraolo et
al.(2017), Di Cintio et al 2017,2021)

3
Oj

At87G2m?hlog A;
p;:Erf<ﬁ 8rG*m:log )

compared to a random number p, extracted with uniform
probability in 0 < p, < 1.

@ In inhomogeneous systems collision happen only where and
when p; is large, provided that the cell size is smaller than the
mean free path.
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Comparison with direct N-BODY: Conservation
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Comparison with direct N-BO
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Comparison with direct N-BODY: Orbital structure
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On average the orbital structure is not altered. For a 30K particle
system 100t,;, are simulated in a matter of hours while for a single
core run with a direct code it takes days.
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Comparison with direct N-BODY': Escapers
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We retrive a linear trend in the fraction of escapers in systems with
mass spectrum f(m) oc C/m®.
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Application to GCs with core collapse: Time and depth of

CC
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Application to GCs
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Application to GCs with core collapse: Density
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Density profile p(r) oc po/r—2?3 appears after core collapse as in
N—body simulations by Kupper et al. (2008) and MonteCarlo by
Hurley & Shara (2012) and Joshi et al. (2000).
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Application to IMBH
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Application to IMBHs
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Application to IMBHs
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Application to IMBHs
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Application to IMBHs
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Application to IMBHs
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Outlook and perspectives

@ We have a tool that is fast and able to treat statistically fairly
large collisional systems

@ Reliable for treating averaged properties of orbits, even if there
is a large degree of approximation

@ Include more accurate regularization to treat interaction with
compact objects in GCs.

@ Include the effects of stellar evolution

@ More realistic models with core collapse and binaries
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THANK YOU FOR THE ATTENTION!
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