

fifth workshop on Millimetre Astronomy in Italy 12-14 June 2023

"Metal enrichment in the CGM around high-z merging galaxies"

(Di Cesare et al., in prep)

Claudia Di Cesare

in collaboration with :

Michele Ginolfi, Luca Graziani, Raffaella Schneider, Michael Romano

post Epoch of Reionization

-2.5

3

Romano+2021

circum galactic medium

* The CGM is situated outside the galaxy (ISM), but inside the host DM halo of the galaxy

* CGM components: *diffuse multiphase* medium with rich gas dynamics, almost fully ionized in H

* it regulates *gas exchanges* and, as a consequence, the star formation activity and galaxy growth

Tumlinson+2017

"Metal enrichment in the CGM around high-z merging galaxies"

"Metal enrichment in the CGM around high-z merging galaxies"

OBSERVATIONS

ALMA Large Program to INvestigate C+ at Early times (ALPINE)

(Le Fèvre+2020, Faisst+2020, Béthermin+2020)

118 main sequence galaxies at $4.4 \le z \le 5.9$ with dust continuum (23) and [CII] measurements (75)

<u>Ginolfi+2020b</u> :

major merging system at z ~ 4.57 [CII] emission from CGM up to ~30 kpc — 50% of total flux between the galaxies

<u>Romano+2021</u>:

morpho-kinematic information from [CII] emission fraction of major merger systems in the ALPINE survey ~40% systems in ALPINE are mergers

Ginolfi+2020b

candidates selection

						\frown
Source	Z1	Z2	Δv	r_n	$\mu_{\rm ICIII}$	μκ
	~1	~2	$[\text{km s}^{-1}]$	[kpc]	Plenj	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
CG_38	5.5731	5.5698	152.3	2.7	1.8	_
DC_308643	4.5238	4.5221	92.3	3.0	1.2	_
DC_372292	5.1345	5.1374	144.0	1.8	2.7	2.9
DC_378903	5.4311	5.4293	94.5	0.9	1.9	_
DC_417567	5.6676	5.6700	106.7	5.3	2.1	_
DC_422677	4.4361	4.4378	92.8	0.0	1.4	_
DC_434239	4.4914	4.4876	206.1	5.5	6.9	_
DC_493583	4.5122	4.5141	103.4	1.0	4.7	_
DC_519281	5.5731	5.5765	158.0	0.9	4.5	_
DC_536534	5.6834	5.6886	234.6	4.4	2.7	_
DC_665509	4.5244	4.5261	95.9	1.0	2.0	_
DC_680104	4.5288	4.5308	106.4	0.0	1.0	_
DC_773957	5.6802	5.6770	141.2	3.0	1.6	5.6
DC_814483	4.5823	4.5796	145.5	7.9	2.4	_
DC_818760	4.5626	4.5609	92.3	9.9	1.3	2.6
DC_834764	4.5076	4.5055	119.0	1.0	1.7	_
DC_842313	4.5547	4.5406	751.5	11.6	32.9	1.5
DC_859732	4.5353	4.5315	205.2	4.9	3.9	_
DC_873321	5.1545	5.1544	4.5	6.5	1.2	3.1
vc_5100541407	4.5628	4.5628	1.9	13.8	1.6	1.4
vc_5100822662	4.5210	4.5205	22.3	10.9	1.6	1.7
vc_5101209780	4.5724	4.5684	217.3	10.8	4.1	2.5
vc 5180966608	4.5294	4.5293	8.9	7.2	3.0	3.7

(Romano+2021)

momento zero maps of the selected candidates

DEIMOS_COSMOS_818760 DEIMOS_COSMOS_873321 z = 5.1542 0 2°37'40.0" J2000 DEC 35.0" 30.0" 54.60 10h00m04.6004.40 04.20 04.00 03.80 J2000 RA vudş_cosmoş_5100541407 vuds_cosmos_5100822662 z = 4.52050 2°04'55.0" -12000 DEC 50.0" 45.0" -00.80 00.60 58.00 57.80 . 57.60 9h58m58.40 58.20 J2000 RA vuds coșmos 5101209780 yuds cosmos 5180966608 2°08'30.0" = 4.5290 0 \bigcirc 25.0" J2000 DEC 20.0" -

 \frown

10h01m33.8033.60 33.40 33.20 33.00 J2000 RA

 $2^{-4.5613}$ \circ

2°32'35.0"

12000 DEC 10.05

25.0"

1°48'40.0" –

35.0"

30.0"

2°22'15.0"

J2000 DEC

10.0"

05.0"

J2000 DEC

10h01m55.4055.20

z = 4.563

 \bigcirc

(

C

10h01m01.4001.20

54.80

 \bigcirc

01.00

J2000 RA

55.00

J2000 RA

10h01m38.0037.80 37.60 37.40 37.20 J2000 RA

sum of componets emission from optimal apertures

more *quantitative* analysis

more *quantitative* analysis

30%-70% gas coming from the diffuse medium

why do we want to compare these observations with simulations ?

- **1.** time evolution of the merging systems
- **2.** CGM emitting? or satellites galaxies we can't observe (resolution)?

SIMULATIONS

dustyGadget (Graziani+2020)

[extension of Gadget-2 Springel+2005]

WHAT DOES dustyGadget DO?

SIMULATIONS

dustyGadget (Graziani+2020)

[extension of Gadget-2 Springel+2005]

WHAT DOES dustyGadget DO?

(see *Di Cesare+2023* for a statistical study on high-z galaxies and *Venditti+2023* for PopIII environments study using dustyGadget)

DUST MASS STELLAR MASS

SIMULATIONS

looking for MAJOR MERGING SYSTEMS in dustyGadget

- 1. redshift range compatible with observations
- 2. cut on the stellar masses (Log(M_{\star}/M_{\odot}) ≥ 10)
- 3. M1/M2 ratios compatible with observations

sample of 10 galaxies at z~4.5

MERGER TREE RECONSTRUCTION

time

11040

11240

gas column

density

C surface density

z = 4.5

preliminary CONCLUSIONS

- diffuse [CII] emission from a sample of 6 interacting galaxies
- 30%-70% gas is coming from the medium between the galaxies
- tentative trends between the diffuse emission, the global physical properties $(L_{[CII]}; M_{\star}; SFR)$ and the relative properties
- merger tree reconstructions with dustyGadget
- predictions from simulations to interpret the observations

.

Thanks for your attention!

email: <u>claudia.dicesare@uniroma1.it</u>

