

The Way of Water: H₂O emission in a DSFG at z≈3.1 F. Perrotta (SISSA)

The plot

ALMA high-resolution (≤ 0.3 arcsec) observations of water emission lines in the strongly lensed HATLAS J113526: optically invisible, bright in the submm, extreme SFR $\approx 1700 \text{ M}_{\odot} \text{ yr}^{-1}$ (using a Salpeter IMF). Highest resolution ever reached in H₂0 at high-z.

Reference paper, "The Way of Water: ALMA resolves H_2O emission lines in a strongly lensed dusty star-forming galaxy at $z \approx 3.1$ ", Perrotta+ 2023, ApJ in press

Work based on archival ALMA public data: ADS/JAO.ALMA\#2018.1.00861.S

Prologue: why are DSFGs important?

Obscured SF peaks at $z \approx 2-2.5$, but has dominated the cosmic history of star formation for the past ~ 12 billion years, back to $z \sim 4$.

For z>2, mainly DSFG with L $_{\rm IR}$ >10 12 L $_{\odot}$, i.e. star-formation rates of thousands of M $_{\odot}$ /yr : most intense starbursts in the Universe.

A sub-sample of DSFGs are known to harbor heavily dust-enshrouded supermassive black holes.

Unique laboratory for investigating the physics of star formation and the chemistry of ISM in extreme environments.

The leading actor: H₂0

Near-prolate asymmetric-top molecule:
 I_c ≈ I_b > I_a

- High dipole moment (1.85 Debye, w.r.t. 0.1 D of CO)
- High energy level-spacing (light hydride)

- Strongly coupled with the FIR radiation field from dust: tracer of regions where dust is strongly irradiated → compact warm SF regions
- Critical density decreased due to «trapping» of the resonant photons, e.g. $n_{crit} 10^9$ cm ⁻³ $n_{c eff} 10^5$ cm ⁻³.

Η

Н

The supporting actor: Dust

1- Catalizer for water formation (in solid form) in dense, cold clouds;

- 2- Ice storage, until cloud collapse to protostars when temperature gradients releases H_2O in the gas phase;
- 3- Absorption of UV light, released as IR-FIR, radiatively exciting rotational lines of water and other molecules (via IR and FIR pumping) according to the selection rules.

Images Credits: Fraser+, The Rev of Sci. Instr. May 2002; Bill Saxton, NRAO/AUI/NSF; T. Ronconi+, 2023.

The "makeup": H₂O excitation/ spectroscopy

Besides collisional excitation, FIR pumping populates levels which decay through a cascade process emitting submm photons.

Transition	$ u_{rest}$	E_{upper}
	[GHz]	[K]
p-H ₂ O 2 ₀₂ -1 ₁₁	987.927	100.8
o-H ₂ O 3 ₂₁ -3 ₁₂	1162.912	305.2
p-H ₂ O 4 ₂₂ -4 ₁₃	1207.639	454.3

Para (antiparallel H protons spins) and ortho (parallel H spins) do not mix.

Academy Award winner for Best Visual Effects: Gravitational Lensing

Credits :ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

 Magnification factors for J113526 water lines of the order 7-12 in flux densities;

Stretched angular scales
 → target source resolved
 up to few hundreds pcs.

Residuals

0.0

-0.6 -0.3 0.0 0.3 0.6 0.9

0.2

x(arcsec)

Jy/arcsec²

0.5

-0.6

Original image

0.3 0.6

0.5

x(arcsec)

Jy/arcsec²

-0.90.6 -0.3 0.0

0.0

Model image

0.0

×10⁻²

0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

0.2

x(arcsec)

ly/arcsec²

0.5

0.8

×10-2

Columns: -ALMA dirty image -Best-fit lensed model dirty image -residuals -image plane's model

- reconstructed source plane (using Singular Isothermal Ellipsoid lens model, see Giulietti+2022)

Brightness scale

0.08

0.00_0.1 0.0

0.0

Reconstructed image

x(arcsec)

0.0

Jy/arcsec²

0.3 0.6

0.9

0.0

×10⁻³

-0.6 -0.3 0.0

0.0

0.8

×10-2

Reconstructed source

0.1

x(arcsec)

0.0

Jy/arcsec²

0.2

0.0

×10⁻³

0.3

Imaging analysis

5, 7, 9, 12 σ contours

Central nucleus traced by mid and hig lines!

Emission lines

No evidence for rotation or outflows of the central nucleus (confirming results from CII analysis, Giulietti+2022).

High-level CO lines and H_2O lines arising from a compact, warmgas and warm-dust region.

The big puzzle of high-z astrochemistry/spectroscopy

For the Astro-chemist, there is no such thing as a "galaxy", but only "molecular building blocks" with their own physical properties. High-z galaxies only allow the analysis of an "average" signal. Key word: SIMPLIFY.

Modeling: how much molecular gas resides in DSFGs, and how is it distributed? (Rybak+2022, Ronconi+2023)

Stacking techniques may help to get the "average" ISM (Spilker+2014;Torsello M., in prep.)

Composite Stellar Population

Nebulae

Molecular Clouds

Courtesy Ronconi T.

The big puzzle of high-z astrochemistry/spectroscopy

J113526 has a central, compact zone where water transitions are ignited, as well as emission from CO(8-7) transition.

Liu+ 2017: a galaxy is modeled with different ISM "components". Each component is an ensemble of molecular clumps with identical physical properties. T_{ex} and level populations in a clump depends on the physical conditions of the dust and of the gas itself. Typical values for a warm gas component: T_{κ} =50 K, $n(H)=10^5 \text{ cm}^{-3}$, $X(H_20)=10^{-5}$

Composite Stellar Population

Nebulae

Molecular Clouds

Active Galactic Nucleus

Courtesy Ronconi T.

Denouement: ISM in J113526

Credits: Liu+ 2017, ApJ 846, 5.

Radiative transfer solution needed to get the ISM average parameters. Hot component, Tdust \sim 70 K, n(H) \sim 10⁵ cm⁻³ and Tgas \sim 50 K embedded in a diffuse dust component Tdust \sim 40 K

Star formation traced by water lines

Assuming Salpeter IMF, SFR[M _{Sun} yr ⁻¹] \approx 1.47 x 10 ⁻¹⁰ L _{IR} [L _{Sun}]. L_{IR} $\leftarrow \rightarrow$ L _{H20} Caveats: L _{IR} can be enhanced by non-SF mechanisms; L_{IR}/L _{H20} may be biased by collision contribution _____ More reliable to trace SF through the purely FIR-pumped water lines (e.g. 4₂₂-4₁₃).

Starburst vs AGN tracers?

High/medium H₂0 lines of J1135 analogous to the sample containing a mild AGN.

Comparison with Yang+ 2013 (for two samples taken from the NASA/IPAC Extragalactic Database), Mrk 231 (Gonzalez-Alfonso+ 2010), Arp 220 (Rangwala+2011), and the lensed QSO APM08279+5255 (vanderWerf+2011) show that AGN may have little impact on water excitation.

End credits

Marika Giulietti

Giovanni Gandolfi

Vincenzo Galluzzi

Meriem Behiri

Marcella Massardi

Andrea Lapi

«Mavi» Zanchettin

Martina Torsello

Francesco Gabrielli

Myself

Tommaso Ron<mark>coni</mark>

Quirino D'Amato

Lumen Boco

