

5th workshop on mm Astronomy – Bologna, 12-14/06/2023

3D modelling of the molecular gas kinematics in optically-selected jellyfish galaxies

Cecilia Bacchini INAF – Astronomical Observatory of Padova

Based on Bacchini et al. 2023 ApJ

Jellyfish galaxies

NASA/Hubble & NASA, M. Gullieuszik and the GASP team

NASA, ESA, Ming Sun (UAH), and Serge Meunier

Jellyfish galaxies

Ram pressure (RP) due to the hydro interaction with the ICM.

$$P_{\rm ram} = \rho_{\rm ICM} V_{\rm gal}^2$$

Gunn & Gott 1972

Jellyfish galaxies

Ram pressure (RP) due to the hydro interaction with the ICM.

Gas disturbed or removed (*ram pressure stripping*, RPS), while stars unperturbed.

RP effect on multi-phase ISM

Different impact on different gas phases (stripping, depletion, truncation)

Gullieuszik+2017; Deb+2020; Moretti+2020ab

"GAs Stripping Phenomena in galaxies with MUSE"

MUSE@VLT large program

IFU data for 114 cluster & field galaxies

+

Follow-up programs for a multiwavelength view

(e.g. radio, sub-mm, UV, X)

Poggianti+2016, 2017b

Gas content & SFR

Zabel+2022; Moretti+ to be submitted

Gas content & SFR

Enhanced SFR w.r.t. field galaxies

Zabel+2022; Moretti+ to be submitted

Vulcani+2018

RP & AGN activity

Poggianti+2017a; Peluso+2022; Akerman+2023

Sample:

4 late-type cluster galaxies

$$4 \times 10^{10} \lesssim \frac{M_{\star}}{M_{\odot}} \lesssim 3 \times 10^{11}$$

Sample

JW100

VRI images Radovich+2019

ALMA data

CO(2-1) and **CO(1-0)** Spatial resolution \sim 1"-2" Channel width Δv =10 km/s

Information on distribution and kinematics of molecular gas

ALMA data

CO(2-1) and **CO(1-0)** Spatial resolution \sim 1"-2" Channel width Δv =10 km/s

Information on distribution and kinematics of molecular gas

Sample:

JO201, JO204, JO206, JW100

Info:

- Favourable conditions for RP
- Tails of ionized gas

Sample:

JO201, JO204, JO206, JW100

Info:

- Favourable conditions for RP
- Tails of ionized gas
- HI: deficient and asymmetric

Sample:

JO201, JO204, JO206, JW100

- Favourable conditions for RP
- Tails of ionized gas
- HI: deficient and asymmetric
- H₂ very abundant

Sample:

JO201, JO204, JO206, JW100

Info:

- Favourable conditions for RP
- Tails of ionized gas
- HI: deficient and asymmetric
- H₂ very abundant
- Host AGN \rightarrow ionised gas outflows

Motivation

GOAL: analyse molecular gas distribution and kinematics.

1) **Impact of RP** on the molecular gas distribution and kinematics? Some gas **still rotating**?

2) **Outflows** of molecular gas driven by the RP and/or the AGN?

3) **Inflows** of molecular gas driven by the RP towards the AGN?

Motivation

GOAL: analyse molecular gas distribution and kinematics.

Modeling of CO datacubes

Di Teodoro & Fraternali 2015

 $V_{los}(x,y) = V_{sys} + V_{rot}(R)\cos\theta\sin i + V_{rad}(R)\sin\theta\sin i$

Modeling of CO datacubes

Modeling of stellar velocity field

Di Teodoro & Fraternali 2015

$$V_{los}(x,y) = V_{sys} + V_{rot}(R)\cos\theta\sin\theta$$

Stellar circular velocity

- Rotation-dominated
- Low-velocity gas: decelerated by RP
- High-velocity gas:
 - x₂ orbits due to bar?
 - Outflow?

Strong radial motions \rightarrow bar

Stellar vs CO kinematics

3/4 barred, maybe also JW100.

<u>Bar region</u>: **bar or rotation**. <u>Outside</u>: **RP** in 3/4 (secondary in JO204).

Radial motions

JO204

Radial flows: Bar-driven inflow (JO206?, JO204). RP-driven outflow (JO201?, JW100).

CO velocity dispersion

Conclusions

 Q1: RP impact on the molecular gas distribution & kinematics? Some still rotating?
A1: Accelerate/decelerate gas depending on RP direction & strength. Some gas rotating.

Q2: Outflows of molecular gas driven by the RP and/or the AGN?
A2: No clear AGN-driven outflows (not always multi-phase).
Possibly RP-driven radial outflow.

Q3: Inflows of molecular gas driven by the RP towards the AGN?A3: Inflows present, but also bars. Bar-RP interplay in feeding AGN?

Take-home message

1. Molecular gas more resilient to RP than other gas phases.

2. Gas turbulence enhanced by RP, either directly or through SNe.