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Abstract

The identification of an emission line is unambiguous when multiple spectral features are clearly visible in the
same spectrum. However, in many cases. only one line is detected, making it difficult to comectly determine the
redshift. We developed a freely available unsupervised machine-leaming algorithm hased on unbiased topology
(UMLAUT) that can be used in a very wide variety of contexts, including the identification of single emission
lines. To this purpose, the algorithm combines different sources of information, such as the apparent magnitude,
size and color of the emitting source, and the equivalent width and wavelength of the detected line. In each specific
case, the algorthm automatically identifies the most relevant ones (i.e., those able to minimize the dispersion
associated with the output parameter). The outputs can be easily integrated into different algorithms, allowing us to
comhine supervised and unsupervised technigues and increasing the overall accuracy. We tested our software on
WISP (WFC3 IR Spectroscopic Parallel) survey data. WISP represents one of the closest existing malogs to the
near-1R spectroscopic surveys that are going 1o be performed by the future Euclid and Roman missions. These
missions will investigate the large-scale structure of the universe by surveying a large portion of the extragalactic
sky in near-1R slitless spectroscopy, detecting a relevant fraction of single emission lines. In our tests, UMLAUT
comrectly identifies real lines in 83.2% of the cases. The acc uracy is sllﬂhll'-f higher (84.4%) when combining our
unsupervised approach with a supervised spproach we previously developed.
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Inter- vs. Intra-Speaker Variation in
Mixed Heritage Syntax: A Statistical
Analysis

Federica Cognola’™, Ivano Baronchelli?* and Evelina Molinari®

" Dipartimento di Stud Europei, Americani e Interculturali, Sapienza Universita dif Roma, Rome, ltaly, ? Dipartimento di Fisica
e Astronomia, Universita di Padova, Padua, ltaly, ° Istituto Culturale Mocheno, Pali del Fersina, Italy

Based on the novel data pertaining to five syntactic phenomena (the position of the
finite verb in embedded clauses, in sentences with a modal verb, negative concord,
the position of focused light/heavy objects in main clauses with a complex tense and
scrambling) in the heritage language Mocheno collected via original fieldwork, we show
that there are two populations — one exhibiting intra-speaker variation between German
and ltalian word orders, and one lacking it; and these two populations are the result
of diatopic variation and, to a lesser extent, of diastratic variation. The results achieved
using quantitative statistical analysis are partially convergent with those arrived at via the
traditional theoretical syntax for Mocheno, but our analysis has allowed us to shed new
light on a series of phenomena that have been neglected or poorly understood thus
far. More specifically, and for the first time, we discovered that there is a micro-variation
resulting from diastratic (age) variation within the Roveda variety, which represents the
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@ Views & downloads
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UMLAUT 1.0
Unsupervised Machine Learning Algorithm based on Unbiased Topology (IDL VERSION)

DOI: 323649071 5vg

REFEREMNCE: Baronchelli |. et al. (2021):

https:/fiopscience. iop.org/article/10.3847/1538-4365/ac250c/meta o
https://arxiv.org/abs/2111.01807 I u

UMLAUT is a variant of the KNN (K-closest neighbor) algorithm.

- Given a set of reference data points (training set), for which the value of N+1 parameters is known,
- Given one analysis data point with N parameters known and the (N+1)-th parameter unknown, pe n

—> UMLAUT estimates the value of the (N+1)-th parameter for the analysis data point. To this purpose, UMLAUT finds the
closest data-points of the training set, in a ranked N-dimensional space "associated” with the physical parameter space.
After finding the closest data points, the unknown parameter is obtained as the combination (ex. from the average) of the
values assumed by the closest reference data points along the (N+1]-th dimension.
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Popular repositories

BESTFIT ic IDL_library

SED fitting code for stellar templates library of DL functions

@ sed ®IDL

python_library ic UMLAUT Public

python functions and classes Unsupervised Machine Leaming Algorithm based on Unbiased Topology

. @ Python ® DL
lvano Baronchelli
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Identifying emission lines is quite easy...
... When multiple lines are detected

Par336 BEAM 124
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[SI] (0.48)
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16000

WISP data (Atek+2010)




But when only one line is detected...

HST IR grisms (J and H band)
G102 ——— (G141

Unknown line detected + noise
S/N detection threshold

12000 13000
Wavelength [A]

Unknown single line detected

Anything else is beneath the S/IN detection threshold




But when only one line is detected...

HST IR grisms (J and H band)
G102 ——— (G141

Unknown line detected + noise
S/N detection threshold

Wavelength [A]

Unknown single line detected

Anything else is beneath the S/IN detection threshold




But when only one line is detected...

HST IR grisms (J and H band)
G102 —— (G141

Unknown line detected + noise
S/N detection threshold

]
[OM]A5007 at z=0.8 Ha+[NII]
; S/N detection threshold [SH]AAGTL6, 6730

Wavelength [4]

Unknown single line detected

Anything else is beneath the S/IN detection threshold




But when only one line is detected...

HST IR grisms (J and H band)
G102 ——— (G141

Unknown line detected + noise
S/N detection threshold

1
B) [ONI]A5007 at z=0.8 Ha+[NII]
' S/N detection threshold [SIAMNGTIG, 6730

[OIN]AAN4959, 5003 Ha+[NII]

Ha | J [SH]ANGT16, 6730
_____ +4 =

12000
Wavelength [4]

Unknown single line detected

Anything else is beneath the S/IN detection threshold




But when only one line is detected...

HST IR grisms (J and H band)
G102 ——— (G141

Unknown line detected + noise
S/N detection threshold

1
B) [ONI]A5007 at z=0.8 Ha+[NII]
' S/N detection threshold [SIAMNGTIG, 6730

[OIN]AAN4959, 5003 Ha+[NII]

Ha | J [SH]ANGT16, 6730
_____ +4 =

12000
Wavelength [4]

Photo-z PDF may not very help

Probability Distribution Function
T i . O O -

0.8
Redshift




WISP PI: M. A. Malkan (University of California - Los Angeles)

The WFC3 Infrared Spectroscopic Parallel survey
H. Atek et al. (2010)

HST pure parallel large program (~2000 orbits, >1500 arcmin?2 )

G102: 0.8 - 1.1 um (R~210)
G141: 1.07 - 1.7 um (R~130)

- direct imaging {J band (F110W),

- slitless spectroscopy{

H band (F140W/F160W)
Ancillary UVIS + IRAC + ground based optical

- One of the most importan proxies =  WISPFields
For the future surveys of LS e | = cmony
Euclid and Roman o /N [ reBas .

- Now collecting data with g |
JWST (PASSAGE survey,

P.l. M. Malkan,
proposal ID: GO-1571 - Cycle 1)

-75°
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A learner can help exploitiﬁ‘g hidden |r'1ﬁformation,
but it does not create information from nothing.



Additional information that can help
identifying a spectral line:

- Apparent Magnitude (F110W);

- Apparent Size (F110W);

- Color index (J-H);

- Line equivalent width;

.. etc ...

Il

l“(ﬂ ~ ‘]tl““-



ALGORITHM 1 (Naive Bayes approach)

PAR: 369 OBJ: 42

Probability
(= Bl
o N

\

- &
o

MAG (F110W): 21.83

p 4350 O W 4 |

SED fitting

~ . J magnitude

HOlI->H
||C)CIJII—>}SII‘:J

Olll—=>Ha

Olll=>SlI

Actual line: Olll
Suggested: Qlll
Other lines:

Ha
Hb
|
ol

Hg

-> 39.09%
2D DI
—> 7.8947%
-> 6.068%
—-> 5.829%

lI‘II IIIJI_III_LJllJ_lJ_l_leII IIIIIrIIIIIIIIIIIIIIIIIlLl
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UMLAUT basics
Unbiased Machine Learning Algoirthm Using Topology

Empirical principle:

Objects that are close to each other in N dimensions
tend to be close also in an indipendent N+1 dimension,

when N>>
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Toucans that are
similar to each other
in 2 dimensions,

tend to be similar also
in 3 dimensions...




UMLAUT basics
Unbiased Machine Learning Algoirthm Using Topology

Empirical principle:

Objects that are close to each other in N dimensions
tend to be close also in an indipendent N+1 dimension)
when N>>

Toucans that are
similar to each other
in 2 dimensions,

tend to be similar also
in 3 dimensions...

...unless one of the
pictures is depicting
the picture of a toucan.




How it works in practice:

. INPUT Analysis data point
Data in N dimensions A
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Ranking of the input el 5 _
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Data in N dimensions

Ranking of the input

variables
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(DBSCAN-like)
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How it works in practice:

INPUT
Data in N dimensions

Ranking of the input
variables

Groups
identification
(DBSCAN-like)

Identification
of closest data
points

Outlier | new type
identification

OUTPUT

points

Average value / fit | PDF
along the N+1 dimension,
for the closest data-

Analysis data point




A)Not homogeneous (x,y) physical dimensions

Dispersion along z




A) Not homogeneous (x,y) physical dimensions

Dispersion along z

C)

Physical
scale

26.5
26.0
25.5
25.0
24.5
24.0
23.5
23.0
22.5
22.0
21.5
21.0
20.5
20.0
19.5
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A) Not homogeneous (x,y) physical dimensions
y

R e 0%ed o too e
BB = 0 e%e 0 e @
¥ @aae [ ] @ 0 @

-] e @ .
5 % i -I!'i A
- L]
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Dispersion along z

B) Homogeneous rank-based
dimensions

C)

Physical
scale

26.5
26.0
25.5
25.0
24.5
24.0
2.5
23.0
22.5
22.0
21.5
21.0
20.5
20.0
19.5
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Among the UMLAUT Advantages:

Single dimensions could retain useful information about the
output without showing any correlations at all with the
output itself.

X
-~ UMLAUT takes into account all the input dimensions
at the same time!




Among the UMLAUT Advantages:

Dimensionality reduction strategies (such as PCA) often
assume orthogonal native axes andlor Gaussian
distributions

Shlens 2014

HERE PC/
EAILS]

- UMLAUT does not require/lassume orthogonal native
axes or assumptions on the data distribution.




Dimensionality reduction strategy

N-dimensional space of expansion of the N input parameters
(N=2 in this example)
- HIH Dispersion (o)

11 1 of the output
parameter

-

>
(<

|
{1

0 1.0 2.0 3.0
Expansion along x

b
=
z
o
1}
S 1.0
[
-
z
o
x
L

0

Strategy (simplified):
1) Measure the dispersion on the output parameter in positions 1, A and B
2) Move into the direction of decreasing gradient (position 2)
3) Iterate until a local minimum is found




Naive Bayes + UMLAUT
PAR: 454  OBJ: 54  MAG (F110W): 22.5570  z: 0.90060

e
]

- .“;..I:.__‘.‘!Size

Probability

0.4
0.2
0.0
-0.2

—
o

Actual line: Ha
Suggested: Ha
Other lines:

Sl => 24.14%

Probability

|
QS Chna gt 1 S
N O N R o @




Ha
[Olll]
[OlI]

Ha
[Olll]
[OlI]

Completeness

88.3 %
77.0 %
50.0 %

Contamination

15.2 %
17.9 %
73.3 %

UMLAUT alone

Completeness

89.6 %
77.8 %
12.5 %

INAIVE Bay:

Completeness

89.3 %
79.6 %
66.7 %

Contamination

16.0 %
18.0 %
33.3 %

8BS + UIVI
Contamination

12.8 %
16.2 %
70.9 %

LAUT




ALMA Band 3 number counts

Image of a band 3 calibrator

- Are there any other serendipitous detections around?

Compute number counts !



ALMA Band 3 number counts
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0.5

0.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
log F [mdy]

Image of a band 3 calibrator

~ 500 valid calibrator images
~ 700 arcmin?(at 1mJy)

- Are there any other serendipitous detections around?

Compute number counts !



~Soptemington | Contribution of
1 BNGS) = ~ s j each single
— : SCOECDN detection

— Logistic fit

ot
o

S ; 1s the flux density of the detection;

o
o

fsp(S;) 1s the fraction of spurious sources at S ;,

o
'S

A(S;) 1s the effective area at §;,

detected detecied
le inputed / N

C(S;) is the completeness at S,

o
ho

1l
4 6
F:;tugul ./ RMSimagc

o
o

_Fluxboosting Fuyro/Figter
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dispersion
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ALMA Band 3 number counts

ALMA Band 3 Differential counts (5.00)

Theoretical models:
Tucci + 2011 (RL-AGN)
Cai + 13 (SFGs)

P
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-1.0 -0.5 0.0 0.5
log F (Total) [mJy]




ALMA Band 3 number counts

ALMA Band 3 Differential counts (5.00)

Theoretical models:
Tucci + 2011 (RL-AGN)
Cai + 13 (SFGs)

P

Ooops....

i ('] l i [l i i i i i i I i i i i I ('] i i [l
-1.0 -0.5 0.0 0.5
log F (Total) [mJy]




ALMA Band 3 number counts

Image of a band 3 calibrator

- Are there any other serendipitous detections around?

Compute number counts !



ALMA Band 3 number counts
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.
Image of a band 3 calibrator Same calibrator (after

changing scale)

Extensions of the central calibrator are counted as (multiple)
serendipitous sources



ALMA Band 3 number counts
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ALMA Band 3 number counts
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ALMA Band 3 number counts

Another calibrator Same calibrator (after
changing scale)

Extensions of the central calibrator are counted as (multiple)
serendipitous sources



ALMA Band 3 number counts
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ALMA Band 3 number counts

Another calibrator Same calibrator (after
changing scale)

Extensions of the central calibrator are counted as (multiple)
serendipitous sources - Down to a few sigma, it becomes
more and more difficult to identify these contaminants by eye
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UMLAUT
adaptable to a wide variety of problems
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Inter- vs. Intra-Speaker Variation in
Mixed Heritage Syntax: A Statistical
Analysis

Federica Cognola™, Ivano Baronchelli?* and Evelina Molinari®

" Dipartimento di Studi Europei, Americani e Interculturali, Sapienza Universita di Roma, Rome, ltaly, 2 Dipartimento di Fisica
e Astronomia, Universita di Padova, Padua, Italy, ° Istituto Culturale Mocheno, Pall del Fersina, ftaly

Based on the novel data pertaining to five syntactic phenomena (the position of the

finite verb in embedded clauses, in sentences with a modal verb, negative concord,

the position of focused light/heavy objects in main clauses with a complex tense and

scrambling) in the heritage language Mocheno collected via original fieldwork, we show

that there are two populations — one exhibiting intra-speaker variation between German

and [talian word orders, and one lacking it; and these two populations are the result

OPEN ACCESS of diatopic variation and, to a lesser extent, of diastratic variation. The results achieved
Edited by: using quantitative statistical analysis are partially convergent with those arrived at via the

Angel J. Gallego, traditional theoretical syntax for Mocheno, but our analysis has allowed us to shed new
Autonomous U-”""e'@”}’O"Ba-'c‘z'z’;i; light on a series of phenomena that have been neglected or poorly understood thus
far. More specifically, and for the first time, we discovered that there is a micro-variation

Reviewed by: _ , . L - . .
cremed resulting from diastratic (age) variation within the Roveda variety, which represents the

Kleanthes K. Grohmann,
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Ongoing development:

- Code optimization (same algorithm - faster run);
- Translate UMLAUT in different languages (Python)
- Parallelization of the code (NVIDIA-CUDA);

- Improvement of the current dimensionality reduction

strategy

 examplel: using a PCA-like strategy

« example2: by replacing each of the input dimensions with random
ranks and comparing the output variance.




Conclusions:

- New facilities producing unprecedented amount of data
are going to be available in the next few years: every
aspect of the treatment of such data must be automated;

UMLAUT is:

- a ML algorithm based on the analogy paradigm;
- extremely (and easily) adaptable to very different
contexts;

S CEVEVEUE] R ]

3 applications were presented:

- Identification of single spectral lines

- Recognition of ancient linguistic variants

- Identification of contaminants in sub-mm number counts
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