

Fragmentation of the ALMAGAL dense clumps into young protoclusters

Alessandro Coletta

3rd Year PhD Student - Sapienza University / INAF-IAPS Rome

ALMAGAL INAF-IAPS Group:

Sergio Molinari, Eugenio Schisano, Alessio Traficante, Davide Elia, Milena Benedettini, Stefania Pezzuto, Juan D. Soler, Chiara Mininni, Ylenia Maruccia

Overview

- ★ Intro: High-mass cluster-forming clumps fragmentation and key questions
- ***** ALMAGAL observations
- ***** Extraction of the Compact Source Catalog
- x Statistical and physical properties of the extracted core population
- reliminary correlations between estimated physical parameters of the cores and physical and fragmentation properties of the hosting clumps

Clump fragmentation

<u>Clumps</u>: dense gas and dust envelopes within molecular clouds, hosting star formation sites (compact cores).

$$n \sim 10^3 - 10^6 \ cm^{-3}$$
 $T \sim 20 - 70 \ K$
 $M \sim 10^2 - 10^4 \ M_{\odot}$ $D \le 1 \ pc$

Cores:

 $n \ge 10^6 \ cm^{-3}$ T up to 100 K $D < 0.1 \ pc$

Clump (black contour) in Taurus GMC

1.4 mm (220 GHz) continuum images of ALMAGAL clumps obtained with ALMA 7M+C2/C3 array

Key questions

- What are the typical clump fragmentation degree and spatial scales?
- How are compact fragments distributed in mass and size, and how this relates to the physical properties and environmental conditions of the hosting clump?

- How do cores gain their mass and how this process evolves with time?
- Which are the physical forces/ processes (e.g. gravity, turbulence) that dominate the fragmentation?

High-mass star formation models:

- Hierarchical fragmentation (e.g. Svoboda+19, Liu+21)
- Core (monolithic, core-fed) accretion
 vs competitive (clump-fed) accretion
 (e.g. Tan+14, Motte+18, Traficante+23)

ALMAGAL observations (ALMA LP, PI: S.Molinari)

Sample: 1000+ dense clumps from Hi-GAL (900+, Elia+17,21) and RMS (100+, Urquhart+15)

Mass: $10^2 - 10^4 M_{\odot}$

Distance: $2 < d < 8 \ kpc$

Evolutionary stages: from IRDCs to HII Regions and ZAMS (i.e. from prestellar to protostellar)

<u>L/M:</u> $10^{-1} - 10^3 L_{\odot}/M_{\odot}$

Surface density: $0.1 - 15 \ g \ cm^{-2}$

Galactic locations: from the tip of the Central Bar to the outer spiral arms of the MW

ALMA Interferometer observations:

- Band 6 (continuum+lines), $\nu_0=220\,GHz$ $\lambda_0=1.4\,mm$
- Configurations: ACA-7M, C-2, C-5 (near sample, d < 4.5 kpc) | MRS: 3-29" | ang.res.: ~0.3" ACA-7M, C-3, C-6 (far sample, d > 4.5 kpc) | MRS: 2-29" | ang.res.: ~0.15"
 - -> ~1000 AU homogeneous spatial resolution over the whole sample

Atacama Large Millimeter/ submillimeter Array (Chile) High-resolution observations are needed to identify, resolve and separate compact cores:

Comparison of ALMAGAL continuum maps at different array configurations (near sample source 108933)

Angular | Spatial resolution: ~ 5" | ~ 20000 AU (~0.1 pc)

Large-scale structure

Angular | Spatial resolution: ~1" | ~ 3000 AU

Medium/small-scale structure

Angular | Spatial resolution: ~ 0.3" | ~ 1000 AU

Small-scale structure

Higher fragmentation degree

(compact cores)

Compact Source Catalog

ALMAGAL Paper I (Coletta et al. in prep.)

- Compact Source Extraction performed on combined array continuum images with an implemented version of the CuTEx algorithm (Molinari+11,16)
- Flux completeness analysis: 4000+ synthetic sources with 10-15 different integrated flux levels injected in 60 fields —> Fcompl = ~1 mJy | Photometry accuracy (int. flux, size): < 20%

Detection statistics

sn-4 catalog

Total detections: 9357

Clumps w/det.: 883 (88%)

Average dets./clump: ~11

Median dets./clump: 7

Nfrag range: 1 - 76

Fint range: ~ 10^-4 - 1 Jy

sn-5 catalog

Total detections: 6321

Clumps w/det.: 838 (83%)

Average dets./clump: ~8

Median dets./clump: 5

Nfrag range: 1 - 49

Fint range: ~ 10^-4 - 1 Jy

Preliminary results from unpublished material

Stay tuned...

Conclusions

- ★ ALMAGAL Compact Source Catalog:
 6321 cores in 838 clumps, Nfrag per clump = 1-49 (aver. 8, med. 5)
 D = ~1000-3000 AU
- ★ ALMAGAL overall CMF: mass range: ~10^-2 - 10^2 Msun observed slope = -1.04±0.02 (6000+ cores in 800+ clumps) Sanhueza+19 (ASHES): -1.07±0.09 (300 cores in 12 70µm dark clumps) Pouteau+22 (ALMA-IMF): -0.95±0.04 / -1.02±0.05 (200 cores in W43)
- ★ Preliminary inferred high-mass star formation scenario from core-clump correlations:
 gravity-driven, clump-fed competitive accretion

Thank you!

Contacts:

Alessandro Coletta

Institute for Space Astrophysics and Planetology (INAF-IAPS)
Via Fosso del Cavaliere 100, 00133 Roma, Italia

Office: 2A17 - Tel. Interno: 4017

E-mail: alessandro.coletta@inaf.it