High Latitude Molecular Clouds chemodynamics using high-resolution multiline spectroscopy

Bologna, 13 June 2023

Marco Monaci¹

Colleagues: S. N. Shore¹, L. Magnani², H. Olofsson³

¹Dip. Di Fisica, Università di Pisa ²University of Georgia, USA ³Chalmers University of Technology, Sweden

Image courtesy of Maurizio Cabibbo

Intro: what are High Latitude Molecular Clouds and why they are important

Overall features of High Latitude Molecular Clouds (HLMCs):

- High galactic latitude ($|b| \gtrsim 35^{\circ}$);
- Generally close (*d* ~ 100 − 200 *pc*);
- Diffuse (A_V ∼ 0.2) or translucent (A_V ∼ 1 − 2) with molecular cores;
- Non-star forming (not all!);
- Comparatively tranquil dynamics;
- Non-thermal linewidths and systematic velocity gradients.

Simple environments that mimic laboratory turbulent flows \rightarrow excellent sites to study interstellar turbulence and testbeds against which the models can be compared.

CfA ¹²CO (1 – 0) survey. The beamsize is about 8' and the velocity resolution is 0.65 $km s^{-1}$.

T. M. Dame and P. Thaddeus (2022)

Introducing MBM 40

MBM 40 is a low-mass $(20 - 40 M_{\odot})$, non-star forming, near $(93^{+23}_{-20} pc)$, diffuse HLMC embedded in a much larger HI structure.

- No star formation or shocks \rightarrow clean example of the turbulent dynamics and cold chemistry
- Near \rightarrow good spatial resolution $(\sim 10^{-2} pc)$
- Well isolated in CO velocity, [+2.5, +4.2] km s⁻¹

 $HI = (15, 17, 19, 21) K km s^{-1}$

 $^{12}CO = 2 K km s^{-1}$

Dense substructures $\begin{cases} N(H_2) \sim (3-8) \times 10^{20} \text{ cm}^{-2} \\ N(HI) \sim (1-2) \times 10^{20} \text{ cm}^{-2} \end{cases}$

L. Magnani et al. (1996), Shore et al. (2003), Monaci et al. (2022)

Observations

Observations

Molecule	ν (GHz)	Telescope	Location(s)	∆v (km s⁻¹)	Beamsize (")	Туре
¹² CO	115.271	FCRAO OSO	Whole cloud MAP1, 2, 3, 4	0.05 0.012	47 33	HBS FBS 9 x 9
¹³ CO	110.201	OSO ARO	MAP1, 2, 3, 4 MAP2	0.013 0.033	34 57	FBS 9 x 9 HBS 3 x 3
HCO⁺	89.188	ARO	MAP2, 4	0.041	71	HBS 3 x 3
H ₂ CO	4.830	Arecibo	MAP1, 2	0.047	56 x 65	FBS 5 x 5
HCN	88.632	ARO	MAP2	0.041	71	Single pointing
CS	97.981	ARO	MAP2	0.037	64	HBS 3 x 3
СН	3.335	Arecibo	Whole cloud	0.069	78 x 96	FBS

HBS = half-beam spacing; FBS = full-beam spacing

Mapping diffuse and dense gas: different tracers

Diffuse

Dense

Monaci et al. (2023, A&A, in press)

And the formaldehyde?

The 4.830 GHz is actually formed by six different components The profile analysis is more complicated, i.e. a satellite line might easily mimic a secondary velocity component.

If we assume that the H_2CO and CO are well mixed, the ¹²CO and ¹³CO line profiles – interpreted as probability distribution functions of the velocity fluctuations – provide convolution kernels that can be used with theoretical profiles of H_2CO based on laboratory intensities of the hyperfine components.

The theoretical profile is created from theoretical optical depth:

$$\tau_{H_2CO} = \sum \tau_{(0,n)} e^{-\left(\frac{\mathbf{v} - \mathbf{v}_{0,n}}{2\sigma}\right)^2}$$

Convolved with normalized profile from ¹²CO or ¹³CO: $\phi(\mathbf{v})_{theo} \propto \exp\left[-\Phi * \left(\frac{\tau_{H_2CO}}{\tau_m}\right)\right]$

F – F'	Rel. Intensity	Frequency (MHz)		
2 - 2	15	4829.659		
1 - 1	3	4829.671		
2 - 1	5	4829.664		
1 - 2	5	4829.666		
1 - 0	4	4829.641		
0 - 1	4	4829.658		

Tucker et al. (1970)

And the formaldehyde?

A shear flow over 1 pc

Turbulence decays faster than the lifetime of the clouds, so a continuous source of kinetic energy is necessary. In MBM 40 (or where is no star formation) this source must be external.

Evidence for large shear flow that runs through western filament.

Caveat: visible in HI, but masked by diffuse external gas. *Driven* profile decomposition using ¹²CO velocity informations. **Reynolds decomposition** is in general problematic \rightarrow here seems to be possible.

Kleiner and Dickman (1985), Dickman and Kleiner (1985)

 $\begin{array}{l} \mbox{Pseudocolor} \rightarrow \mbox{HI over west ridge} \\ \mbox{Solid/dashed lines} \rightarrow \mbox{centroid velocities of 12CO and CH} \\ \mbox{Stars} \rightarrow 13CO centroid velocity in MAP1, 2 and 4 \end{array}$

Intermittency and single line profile as Probability Distribution Function (PDF)

Intermittency: large deviations in velocity that are rare events occurring with a higher frequency than in an uncorrelated process.

PDF computed as the histogram of: $\delta v(\mathbf{r}, \delta \mathbf{r}) = u_c(\mathbf{r}) - u_c(\mathbf{r} + \delta \mathbf{r})$

 u_c velocity centroid:

$$u_{c} = \frac{\int_{line} T_{A}(u) u \, du}{\int_{line} T_{A}(u) \, du}$$

Large scale velocity correlation can mask turbulence \rightarrow detrending is 10⁻² crucial.

Possible structure of the longitudinal shear

A reconstruction of the topological structure of MBM 40

Common picture: complex profiles arise from multiple superposed flows or velocity components.

Linewidths can be continuously and physically consistently reconstructed with the combined contributions of a twisted flow and turbulent broadening

Simple picture \rightarrow we see skew in single line profiles that cover a much smaller, spatially unresolved, region.

References

The mixing of dust and gas in the high latitude translucent cloud MBM 40 M. Monaci, L. Magnani and S. N. Shore A&A, 668 (2022) L9

Shear, writhe and filaments: turbulence in the high latitude molecular cloud MBM 40 M. Monaci, L. Magnani, S. N. Shore, H. Olofsson and M. R. Joy *Accepted for publication in A&A* (2023)

Backup slides

Dust to gas mass ratio (DGMR)

Monaci et al. (2022)

Structure Functions (SFs)

$$S_p = \langle |A(\mathbf{r}) - A(\mathbf{r} + \delta \mathbf{r})|^p \rangle$$

¹²CO and H₂CO in MAP2

Driven decomposition of HI profiles

Dust and gas relation

Blue: WISE 12 μ m image that traces mainly PAHs. The cloud shape is invisible in this channel \rightarrow cloud optically thick to UV radiation. Orange: HI velocity channels. Note that the external envelope is traced by both HI and

PAHs.

MAP2

MAPZ