

Osservatorio Astrofisico

di Arcetri (INAF-OAA)

Fifth Workshop on Millimetre Astronomy in Italy

Bologna, 12-14 of June 2023

First ALMA maps of cosmic-rays ionization rate in high-mass star-forming regions *Giovanni Sabatini* ¹

Collaborators: Stefano Bovino² Elena Redaelli³

⁷ INAF – Osservatorio Astrofisico di Arcetri, Firenze, IT;
 ² Departamento de Astronomía, Concepción, CL;
 ³ Max-Planck-Institut für Extraterrestrische Physik, Garching, DE;

EUROPEAN ARC ALMA Regional Centre || Italian

CRs: the dawn of chemistry

(e.g. Ceccarelli et al 2014, 2022 and refs therein)

Estimates of the ζ_2 (1) $H_2 + CR \rightarrow H_2^+ + e^-$ (2) $H_2^+ + H_2 \rightarrow H_3^+ + H$

(e.g. Geballe et al 1999, Indriolo & McCall 2012, Neufeld & Wolfire 2017, Oka et al 2019)

In diffuse clouds: direct determination of ζ_2 from H₃⁺ doublet absorption lines.

high-resolution spectroscopy + bright background sources

0.85

0.80

36660

(Indriolo et al. 2007)

36680

Wavelength (Å)

36690

36700

36670

In diffuse clouds: direct determination of ζ_2 from H_3^+ doublet absorption lines.

high-resolution spectroscopy
 + bright background sources

Not applicable in dense molecular clouds (shielded from the interstellar UV radiation field)

Estimates of the ζ_2

CR ionization rate \uparrow of H₂ molecule (also ζ_2)

$$\zeta_{\rm H_2}^{\rm ion} = k_{\rm CO}^{\rm o-H_3^+} \frac{X(\rm CO) \ N(\rm o-H_2D^+)}{3 \ R_{\rm D}\ell}$$

path-length used to estimate N

Ingredients (for 6-8 servings):

• ortho- $H_2D^+ \rightarrow N(o-H_2D^+)$

DCO⁺
 H¹³CO⁺

• C¹⁸O

(Bovino et al. 2020)

Cooking

More methods by: *Guélin*+77, *Caselli*+98 (DCO⁺, HCO⁺, CO), *Ceccarelli*+14, *Redaelli*+21b (HCO⁺, N₂H⁺, N₂D⁺), *Fontani*+17 (HC₃N, HC₅N), *Favre*+18 (c-C₃H;), *Bialy* 2020, *Padovani*+22 (H₂ NIR-lines) G.Sa

Estimates of the ζ_2

CR ionization rate of H₂ molecule (also ζ_2)

$$\lim_{H_2} = k_{CO}^{o-H_3^+} \frac{X(CO) N(o - H_2D^+)}{3 R_D(\ell)}$$

path-length used to estimate N

Ingredients (for 6-8 servings):

ortho- $H_2D^+ \rightarrow N(o-H_2D^+)$

DCO⁺ H¹³CO⁺ C¹⁸O

(Bovino et al. 2020)

→ X(CO)

Method assumptions:

- 1. CO \rightarrow main source of destruction for H₃⁺;
 - The deuterium fraction R_D from DCO⁺/HCO⁺ traces most of a. the deuteration;
- Need for $o-H_2D^+$ (i.e. valid in prestellar/cold environments); 2.
- Dependent on the assumed path-length; 3.

More methods by: Guélin+77, Caselli+98 (DCO⁺, HCO⁺, CO), Ceccarelli+14, *Redaelli*+21b (HCO⁺, N₂H⁺, N₂D⁺), *Fontani*+17 (HC₃N, HC₅N), *Favre*+18 (c-C₂H;), *Bialy* 2020, *Padovani*+22 (H₂ NIR-lines)

Source selection

AGAL351.571+00.762

 Nearby (D ~ I.3-I.9 kpc; I''~I600 AU @ I.6 kpc) (Koenig et al 2017, Giannetti et al 2017)
 Intermediate-mass clumps (M_{clump}~I70-I50 M_o)

(see Redaelli's Poster, for more details)

 Quiescent/70µm-dark clumps: o-H₂D⁺ detected with APEX (Sabatini et al 2020)
 SCIMES: core-finding algorithm (*Colombo* et al 2015)

Config. I - Band 6 (~ 216-231 GHz)

(Sabatini et al 2023)

Config. 2 - Band 6 (~ 248-260 GHz)

- **Calibration**: ALMA pipeline (v2021.2.0.128)
- Imaging: 12m + 7m + TP manually combination (e.g. *Plunkett* et al 2023)
 G Sabatir

A LISIN A REAL OF LISING AND A

Depletion factor (f_D)

Ratio between the 'expected' abundance of CO relative to $H_2(\chi^E_{C^{18}O})$ and the 'observed' value $(\chi^{o}_{C^{18}O})$:

(Sabatini et al 2022)

 ζ_2 maps with ALMA

- Protostellar molecular outflows identified using the CO (2–1) emission (12m + 7m + TP)
- One evidence only in a continuum identified core of AG354

 $\zeta_2 \text{ vs N(H_2)}$

Conclusions

- Cores belonging to the same parental clump have comparable $\langle \zeta_2 \rangle$
- ⟨ζ₂⟩ in AG354 is
 ≈ 3 higher than in AG351;
- Global decreasing trend of ζ₂ with
 N(H₂) (see Padovani et al. 2022)

(see Padovani et al 2020 and Gabici 2022 reviews)

Summary

Aims of the study:

- a. To take a first look at the ζ_2 distribution within two high-mass star-forming regions;
- b. To investigate if/how ζ_2 varies from source-to-source and as a function of N(H₂);

We find:

- 1. Similar ζ_2 between cores harboured in the same parental clumps;
- 2. A difference of a factor of 3 between the $\langle \zeta_2 \rangle$ obtained in the two cores populations;
- 3. A general decreasing trend of ζ_2 as a function of N(H₂);

Thank you

Backup slides

SCIMES (core-finding algorithm; Colombo+15)
 Applied to the o-H₂D⁺ cube (ppv space)
 →7 and 9 o-H₂D⁺ cores identified in G351 and G354, respectively

(see Padovani et al 2020 and Gabici 2022 reviews)

different morphology of magnetic fields

 ζ_2 with ALMA - Caselli+98

→ x(e) 10-100 times higher than in the literature

(de Boisanger+96, Williams+98, Caselli+02, Salas+21)

ζ_2 maps comparison

CO-depletion in ASHES

 CO-depletion study on core scale in 12 massive clumps selected from the ASHES survey;
 Sabatini et al. (2022)

ASHES: 294 cores with 210 prestellar cand. (e.g. no outflows or warm-gas molecular emission)

CO-depletion in ASHES

 CO-depletion study on core scale in 12 massive clumps selected from the ASHES survey;
 Sabatini et al. (2022)

CO-depletion in ASHES

$o-H_2D^+$ as chemical clock

106 ATLASGAL sources in two datasets:

- 1. HMCs with high degree of deutereted NH₃; (Wienen+21)
- 2. TOP100 survey to observe N_2H^+ (372 GHz); (Lee+21)

16 sources with detection (70w:7, IRw:6, IRb:2, HII:0);
 46 sources for detection limits (70w:8, IRw:16, IRb:9, HII:13);

A PARTING CA AND CAR A

o-*H*₂*D*⁺detection rate of 70w:47%, IRw:27%, IRb:18%, HII:7%

$o-H_2D^+$ as chemical clock

- Confirmed decreasing trend in X(o-H₂D⁺) in a sample of independent HMSFRs;
- o-H₂D⁺ : tracer of pre-stellar stages;

8 sources with additional DCO⁺, HCO⁺, C¹⁷O data

Table 2. Summary of the observations.

Molecules	Quantum numbers	Frequencies (GHz)	Telescopes	Beam FWHM (arcsec)	Spectral resolution (km s^{-1})	rms noise ^(a) (K)	References
$o-H_2D^+$	$1_{10} - 1_{11}$	372.4	APEX	17	0.5-0.6	0.02-0.05	This work
$H^{13}CO^+$	1–0	86.8	IRAM-30 m	24	0.75	0.02	This work
DCO ⁺	1-0	72.0	IRAM-30 m	28	0.75	0.02	This work
C ¹⁷ O (TOP100)	1–0	112.4	IRAM-30 m	21	0.5	0.05	[1]
$C^{17}O$	1–0	112.4	IRAM-30 m	21	0.6	0.06	[2]

Notes. ^(a)The temperatures are reported on the main-beam temperature scale. **References.**[1] Giannetti et al. (2014); [2] Csengeri et al. (2016).

ζ_2 in ATLASGAL

8 sources with additional DCO⁺, HCO⁺, C¹⁷O data

Table 5. Summary of the quantities to calculate the CRIR.

ATLASGAL-ID ^(a)	χ (CO) ^(a)	R _D	ζ_2^A	$\zeta_2^{\rm ref}$	ζ_2^B
	(10^{-5})		$\ell = 0.5 R_{\rm eff} (10^{-17} (\rm s^{-1}))$	$\ell = R_{\rm eff}$ (10 ⁻¹⁷ (s ⁻¹))	$\ell = 2R_{\rm eff} (10^{-17} (\rm s^{-1}))$
G13.18+0.06	8.0	0.002 ± 0.001	6.92	3.46	1.73
G14.11-0.57	11.5	0.011 ± 0.004	3.18	1.59	0.80
G14.23-0.51	4.6	0.011 ± 0.004	3.67	1.84	0.92
G14.49-0.14	4.7	0.011 ± 0.003	6.68	3.34	1.67
G14.63-0.58	5.8	0.003 ± 0.001	11.62	5.81	2.91
G15.72-0.59	11.1	0.018 ± 0.006	3.06	1.53	0.77
G18.61-0.07	4.6	0.005 ± 0.002	1.33	0.67	0.34
G19.88-0.54	5.8	0.005 ± 0.002	3.00	1.50	0.75

