AGN Feedback and ISM properties in the nearby Universe Maria Vittoria Zanchettin - SISSA and INAF/OATs Fifth Workshop on Millimetre Astronomy in Italy Bologna, 12th June 2023

In collaboration with: M. Massardi, A. Lapi, C. Feruglio, F. Fiore, M. Bischetti, A. Travascio

A project funded by PRIN MIUR contract 2017PH3WAT blackholewinds.inaf.it

• Introduction

AGN Feeding and Feedback

Results

Disks and outflows in local Universe

• Conclusions

Outline

Credit L. Capuano

AGN Feeding and Feedback

AGN feedback is necessary to explain Galaxy Formation and Evolution. Observational evidence of strong link between SMBH and host galaxies $M - \sigma$ relation.

FEEDING

Star Formation process: conversion of gas into stars

AGN phase: gas accretion onto the central SMBH $L_{AGN} = \epsilon \dot{M}_{acc} c^2$

FEEDBACK

Injection of **energy and momentum** into the ISM/ CGM: winds, shocks, jets by AGN and SNe

Motivation: AGN Feeding and Feedback cycle

Radio Jets / AGN winds can drive **multiphase outflows** Neutral atomic, ionised and cold molecular gas phases

The gas of the ISM can be removed, heated up or disrupted influencing the star formation

Global effects:

Global Effects: Involve integrated properties —> scaling relations Integrated properties —> scaling relations Can be derived for large samples out to high z

LocaLocaleffects:

Locally modified properties. Properties are modified ocally

Challenging at high-z

IBISCO - The IBIS -AGN CO survey

- 47 AGN hard-Xray selected AGN from the INTEGRAL-IBIS catalog (Malizia et al. 2017)
- Unbiased against nuclear obscuration
- $L_{\rm bol} > 10^{43} {\rm erg/s}$
- z < 0.05
- Accurate BH masses (MASER or reverberation mapping), M* and SFR
- Accurate measure of nuclear properties from INTEGRAL, NuSTAR, XMM spectra

Subset of 15 objects with available IRAM30m, ALMA, MUSE and VLA radio data

Mrk509 and outflow

Local type 1.5 Seyfert at z = 0.034 with a $L_{bol} \sim 10^{45}$ erg/s (Duras+2020)

- **Bulge** in Optical imaging (Ho & Kim2004)
- **Ionised gas disk & starburst ring** (Kriss+2011) with active SF, , $SFR = 5 M_{\odot}/yr$ (Gruppioni+2016) and $M_* = 3 \times 10^{10} M_{\odot}$
- Ongoing minor merger with a gas rich dwarf (Fischer+2015, tidal tail)
- **[OIII] quasi spherical wind** (Liu+2015) with v = 290 km/sand $\dot{M}_{out} = 5M_{\odot}/yr$ within ~2 kpc
- **UFOs** on the nuclear region with v~0.150.2c and outflow rate $\dot{M}_{UFO} = 0.005 - 0.05 M_{\odot}/yr$ (Tombesi+2011,2012)
- Ionised wind in absorption in UV (Kriss+2011, 200 pc)

Fifth Workshop on mm Astronomy in Italy, Bologna 12th June 2023

Mrk509 observed with ALMA

ALMA observation of CO(2-1) at 270 pc resolution

- CO disk with $M(H_2) = 1.7 \times 10^9 M_{\odot} (\mu_1)$ coincident with starburst ring
- Dynamical Model (3DBAROLO, Di Teo $\frac{100}{10}$ and $M_{dyn} = (2.0 \pm 1.1) \times 10^{10} M_{\odot}$
- Inclined warped disk + kinematical p^{-1.0}

1.5

1.0

0.5

0.0

dust)

- - not related to tidal tail

 $\dot{M}_{out} = 6.4 - 17 M_{\odot}/yr$ optically thin/thick case

• Inner molecular wind overlaps with ionised wind and similar velocity: cooling

sequence in AGN-driven wind (momentum conserving wind/radiation pressure on

• Outer wind overlaps with starburst ring, energy consistent with SNa driven wind,

2.0	00	
1.7	75	
1.5	50	_
1.2	25	*km/s
1.(00	ty [Jy
0.7	75	ntensi
0.5	50	-
0.2	25	
0.0	00	

Disk stability vs outflow

Toomre parameter $Q_{gas} = \frac{1}{\pi RG\Sigma_{gas}}$ $(Q_{gas} > Q_{crit} = 1 - 3, \text{disk stable})$

In Mrk 509 (Q_{star} not included this analysis):

- Disc stable at nucleus and outflow region : $Q_{gas} = 3.5 - 5$ and $\sigma_{disp} = 30 - 40$ km/s
- Marginally stable disc at starburst ring : $Q_{gas} \sim 3 \text{ and } \sigma_{disp} \sim 20 \text{ km/s}$
- 1 kpc • Stable disk at location of molecular winds, in agreement with suppression of SF in that region (Liu+2015)

NGC2992 multiphase disk and outflow

components (Marinucci et al. 2018, Middei et al. 2022)

- Swift, XMM-Newton and NuSTAR X-ray data: highly variable nuclear continuum and UFOs
 - JVLA 6cm observations : 8-shaped structure of about 8 arcsec (~1 kpc) along PA = -26 deg
 - ALMA continuum maps at 1.3 mm: cold dust component in the inclined disc (~1.5 kpc) and within radio emission
 - ALMA CO(2-1) data at ~100pc resolution: **molecular gas** disk and outflow
 - MUSE data : warm ionised gas disk and ionised wind (NRL) Mingozzi et al. 2019

Radio emission

VLA 6cm emission : 8-shaped emission due to expanding plasma bubble into the ISM + radio emission due to SF ALMA 1.3mm emission : dust disc almost edge-on $M_{dust} = (4.04 \pm 0.03) \times 10^6 M_{\odot} (T_{dust} = 30 K and \beta = 1.5)$

NCG2992: multiphase discs

Zanchettin et al. submitted

NCG2992 : molecular perturbations

Perturbations to disc-like kinematics

- EDGE1 molecular gas in outflow with velocity similar to the ionised phase $M(H_2) = 2.7 \times 10^7 M_{\odot}$
- EDGE2 complex kinematics due to the tail that connects NGC2992 to NGC2993

Clumps of molecular gas detected outside the disc: • Velocity up to 200 km/s

Located from 0.6 kpc up to 1.5 kpc from the AGN • $M_{total}(H_2) = 1.6 \times 10^7 M_{\odot}$

Zanchettin submitted

NCG2992 : ionised outflow from nuclear up to kp scales

[OIII] traces high velocity gas outflowing at nucleus where no molecular outflow is detected

Nucle West West East (East

Complex [OIII] kinematics traced through :

- Blue wing : v[-1000, -200]km/s
- Red wing : v[200, 1000]km/s

	$L_{[OIII]}$	A_V	n _e	M_{of}	r _{of}	Vof	\dot{M}_{of}	\dot{E}_{kin}
	$[10^{42} \text{erg/s}]$		$[cm^{-3}]$	$[10^{6} M_{\odot}]$	[kpc]	[km/s]	$[M_{\odot}/yr]$	[10 ⁴⁰ eg/
	(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)
eus (N)	22.5 ± 3	3.9	3495	0.26 ± 0.04	0.3	-895±5	2.2 ± 0.3	56±8
Cone 1 (W1)	6.5 ± 1	1.4	228	11 ± 2	1.5	217 ± 5	5.1 ± 0.7	8±1
Cone 2 (W2)	1.1 ± 0.2	-	58	7±1	6.7	217 ± 5	0.7 ± 0.1	1.1 ± 0.2
Cone 1 (E1)	2.1 ± 0.3	1.5	146	5.6 ± 0.8	1.5	-375±5	4.3 ± 0.6	19±3
Cone 2 (E2)	0.5 ± 0.1	-	21	10 ± 2	5.6	-227±5	1.3 ± 0.3	2.1±0.

Zanchettin et al. submitted

AGN wind scaling relations

• ESO428, NGC2992, Mrk509 :

molecular outflow rate significantly below the best-fit correlation for molecular winds

• Importante of a **multi-wavelength** analysis of the IBISCO sample with ALMA sub-mm and MUSE/VLT optical

М_о [М₀/уг]

Fifth Workshop on mm Astronomy in Italy, Bologna 12th June 2023

Conclusions

- stability with ALMA data
- cones with ALMA, MUSE/VLT and radio data
- molecular winds

• Mrk509 : Multiphase momentum-conserving AGN driven outflow and analysis of the CO disc

• NGC2992 : Multiphase disc and winds, molecular gas detected in outflow within the ionised

• Indication that the molecular outflow rate is significantly below the best-fit correlation for

Gas density

Ionised mass :
$$M_{ionised} = 0.8 \ 10^8 \frac{L_{[OII]}}{10^{44}}$$

• Ionisation parameter

$$\log U = a_1 + a_2 \log\left(\frac{[OIII]}{H_{\beta}}\right) + a_3 \log\left(\frac{[OIII]}{H_{\beta}}\right)^2 + a_4 \log\left(\frac{[NII]}{H_{\alpha}}\right)$$

• Electron density
$$n_e = 3.2 \frac{L_{bol}}{10^{45} erg/s} \left(\frac{r}{1 kpc}\right)^{-2} \frac{1}{U} cm^{-3}$$
 wher

 $L_{bol} = 10^{44.13} erg/s$ (Baron and Netzer 2019)

• Voronoi tessellation with minimum S/N = 10

Variation of n_e within the cones, n_e exceeding 10^3 in inner regions [SII] doublet cannot be used as proxy

