Exploring the mm-to-cm Spectral Energy Distribution of nearby spirals

Simone Bianchi (INAF-Arcetri)

F. Salvestrini (INAF-Arcetri) E. Battistelli (Roma Sapienza)

F. Galliano S. Madden (CEA-Saclay)

F. Govoni F. Loi A. Melis M. Murgia A. Ritacco (INAF-Cagliari)

M. Bonato V. Casasola R. Paladino S. Righini (INAF-IRA)

A. Jones N. Yzard (U. Paris Sud) E. Xilouris

(NOA Athens)

The SED of NGC 6946

Anomalous Microwave Emission (AME)

Emission at 30 GHz in the Milky Way, in excess of synchrotron, free-free and dust emission.

AME correlates with dust emission at larger frequencies

Detected in various environments

AME all-sky map at 23 GHz Planck Collaboration Int. XXII (2015)

AME in the global SED of M31 Battistelli+ 2019

AME emissivity

 $\epsilon_{30 \text{ GHz}}^{\text{AME}} = \frac{S_{30 \text{ GHz}}^{\text{AME}}}{M_{\text{d}}/D^2}$

Surface brightness per dust mass surface density

AME emissivity

Surface brightness per dust mass surface density

$$\left(\frac{\mathrm{SFR}}{\mathrm{M}_{\odot} \mathrm{yr}^{-1}}\right) = 1.11 \times 10^{-37} \left(\frac{\nu L_{5 \mathrm{GHz}}}{\mathrm{ergs}^{-1}}\right)$$

(Murphy+2011; Tabatabaei+2017)

Conclusions

- Need for a full coverage of the 20-100 GHz gap in the SED: it will be possible when the SRT will be operational again.
- Resolved maps in the K, Q and W band will allow to study possible variations of the SED (and its components, like AME) within a galaxy
- What can we reasonably achieved at SRT with the PON instruments?

About 10 galaxies in 300h in Q and W

Demanding, but within large, multy term, programs

If interested, contact me: simone.bianchi@inaf.it