

Molecular gas and dust extinction relation revealed by ALMaQUEST

Alice Concas ESO fellow

1 Molecular gas and dust extinction relation revealed by ALMaQUEST, Alice Concas 12/06/2023

Introduction Observing Molecular Gas

Molecular Gas is the fuel of SF, key ingredient to understand SF & quenching in galaxies

CO transitions

- Atomic Carbon [CI]
- Ionised Carbon [CII]
- Dust emission

Introduction Observing Molecular Gas

Molecular Gas is the fuel of SF, key ingredient to understand SF & quenching in galaxies

CO transitions

- Atomic Carbon [CI] + Dust absorption
- Ionised Carbon [CII]

Dust absorption From Hα/Hβ

• Dust emission

See also Concas&Popesso19; Brinchmann+2013; Boquien+2013; Kreckel+2013; BB+2018,2020

Introduction Cold gas-Dust reddening relation in our Galaxy

A SURVEY OF INTERSTELLAR H I FROM La ABSORPTION MEASUREMENTS. II.

R. C. BOHLIN,*† B. D. SAVAGE,*‡ AND J. F. DRAKE§

Received 1977 October 17; accepted 1978 February 23

ABSTRACT

The Copernicus satellite has surveyed the spectral region near L α to obtain column densities of interstellar H I toward 100 stars. The distance to 10 stars exceeds 2 kpc and 34 stars lie beyond 1 kpc. Stars with color excess E(B - V) up to 0.5 mag are observed. A definitive value is found for the mean ratio of total neutral hydrogen to color excess,

 $\langle N(\text{H I} + \text{H}_2) / E(B - V) \rangle = 5.8 \times 10^{21} \text{ atoms cm}^{-2} \text{ mag}^{-1}$.

4

Cold gas-Dust reddening relation on global scale in local SF galaxies

512 SDSS-selected galaxies xCOLD GASS (Saintonge+2017) @low z, $M_{\star} > 10^9 M_{\odot}$

- Global Molecular gas mass from L_{CO} (Noema)
- Dust extinction from optical line ratio $H\alpha$, $H\beta$ (SDSS spectroscopy)

SF, AGNs, Composite, unClass

Concas & Popesso 2019, See also Popesso, Concas et al. 2020

ALMA-MaNGA QUEnching and STar formation survey PIs:Lin,Ellison

~47 local galaxies from MaNGA + 4 ALMA programs 12CO(1-0) at 2.5"

ALMaQUEST sample in the SFR-Mstar plane

★ 47 galaxies $M_{\star} > 10^{10} M_{\odot}$ On, above and below Main Sequence

★ Optical properties: $H\alpha, H\beta, [OIII], [NII]$ fluxes, $\Sigma_{\star}, \Sigma_{SFR}$ from PIPE3D (Sanchez et al. 2016)

Concas+ in prep.

ES

ALMaQUEST Sample selection:

★ Only Star-Forming spaxels using BPT (Kauffmann et al. 2003)

- ★ SNR>3 for CO, $H\alpha$ & $H\beta$ emission lines
- ★ Inclination effects, i < 70deg, ba>0.34 (34 galaxies)

= 11561 spaxels

$\mathbf{L}_{CO} \, \mathbf{VS} \, \mathbf{Balmer} \, \mathbf{Decrement} \, \mathbf{on} \, \mathbf{kpc} \, \mathbf{scale}$

Σ_{H2} VS Balmer Decrement on kpc scale

Σ_{H2} VS Balmer Decrement on kpc scale

ALMaQUEST

Assuming a constant conversion factor $\alpha_{CO} = 4.3 M_{\odot} pc^{-2} (K \, km \, s^{-1})$ (e.g., Bolatto et al. 2013)

Are we able to predict L_{CO} , Σ_{H2} from BDEC?

Are we able to predict L_{CO} , Σ_{H2} from BDEC?

—> Test our empirical relation with CARMA EDGE-CALIFA survey Spatially resolved $H\alpha/H\beta$ and CO emission

Test with CARMA EDGE-CALIFA survey (See Bolatto+2017)

~126 local galaxies observed with CARMA interferometer 12CO(1-0) and CALIFA optical IFU

Same sample selection:

★ Only Star-Forming spaxels using BPT (Kauffmann et al. 2003)

- ★ SNR>10 $H\alpha$ & $H\beta$, CO mom0/mom0_sig>1
- ★ Inclination effects, i < 70deg, ba>0.34

= 3730 spaxels

Concas+ in prep.

Spaxels at approximately the Nyquist rate, i.e. only 1 spaxel in every 3 is included.

+ES+ **EDGE-CALIFA distribution VS ALMAQUEST best fit line**

Spaxels at approximately the Nyquist rate, i.e. only 1 spaxel in every 3 is included.

Kennicutt-Schmidt Relation with predicted Σ_{H2} from $H\alpha/H\beta$ lines

Σ_{H2} - BDec relation and metallicity variation ALMaQUEST

Σ_{H2} - BDec relation and metallicity variation

Metallicity

At fixed Σ_{H2} the metallicity increases with BDec At fixed Bdec

the metallicity increases with Σ_{H2}

The effect disappears if we assume a variable α_{CO} conversion factor!

Higher correlation factors Pearson $\rho = 0.69$ Spearman $\rho = 0.63$ **Concas+ in prep.**

Understand the metallicity variation in the Σ_{H2} - BDec relation

dust optical depth $\tau_V = f(H\alpha/H\beta)$

dust optical depth

$$\tau_V = f(H\alpha/H\beta)$$

Understand the metallicity variation in the Σ_{H2} - BDec relation $\Sigma_{gas} = \frac{1}{DGR} \Sigma_{dust}$ and $\Sigma_{dust} \approx \tau_V \longrightarrow \Sigma_{gas} \approx \frac{1}{DGR} \tau_V$

$$\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2} \qquad \text{ If } \ \Sigma_{HI} \sim 0$$

dust optical depth

$$\tau_V = f(H\alpha/H\beta)$$

Understand the metallicity variation in the Σ_{H2} - BDec relation $\Sigma_{gas} = \frac{1}{DGR} \Sigma_{dust} \text{ and } \Sigma_{dust} \approx \tau_V \longrightarrow \Sigma_{gas} \approx \frac{1}{DGR} \tau_V$ $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2} \qquad \text{if} \quad \Sigma_{HI} \sim 0$ dust optical depth

$$\tau_V = f(H\alpha/H\beta)$$

Concas+ in prep.

 $\rightarrow \Sigma_{gas} \approx \Sigma_{H2} \sim \alpha_{CO} I_{CO}$

Understand the metallicity variation in the Σ_{H2} - BDec relation $\Sigma_{gas} = \frac{1}{DGR} \Sigma_{dust} \text{ and } \Sigma_{dust} \approx \tau_V \longrightarrow \Sigma_{gas} \approx \frac{1}{DGR} \tau_V$ $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2} \qquad \text{if} \quad \Sigma_{HI} \sim 0$ $\rightarrow \Sigma_{gas} \approx \Sigma_{H2} \sim \alpha_{CO} I_{CO} \sim \frac{1}{DGR} \tau_V \qquad \text{dust optical depth}$ dust optical depth $\alpha_{CO} = f(Z)$ DGR = f(Z)Metallicity!!! Concas+ in prep. 24

Comparison with previous results

Dust attenuation for the H α line:

$$A_{H\alpha} = \frac{K_{H\alpha}}{-0.4 (K_{H\alpha} - K_{H\beta})} \times \log\left(\frac{F_{H\alpha}/F_{H\beta}}{2.86}\right)$$

Optical extinction:

 $A_V = A_{H\alpha}/0.817$

Assumptions: extinction-free $H\alpha/H\beta$ flux ratio = 2.86 (Osterbrock 1989) RV = 3.1 (Cardelli, Clayton & Mathis 1989, Cardelli+1989) Concas+ in prep.

Comparison with previous results

Assuming a constant conversion factor

$$\alpha_{CO} = 4.3 M_{\odot} p c^{-2} (K \ km \ s^{-1})$$

(e.g., Bolatto et al. 2013).

Comparison with previous results

Barrera-Ballesteros+20 data from EDGE-CALIFA survey

Larger scatter probably due to sample selection

Understand the physics behind the Cold gas - Balmer Decrement relation $\Sigma_{gas} = \frac{1}{DGR} \Sigma_{dust} \text{ and } \Sigma_{dust} \approx \tau_V \longrightarrow \Sigma_{gas} \approx \frac{1}{DGR} \tau_V$ $\Sigma_{gas} = \Sigma_{HI} + \Sigma_{H2} \qquad \text{ if } \ \Sigma_{HI} \sim 0$ $\longrightarrow \Sigma_{gas} \approx \Sigma_{H2} \sim \alpha_{CO} I_{CO} \sim \frac{1}{DGR} \tau_V \qquad \text{dust optical depth} \\ \tau_V = f(H\alpha/H\beta)$

The relation between τ_V and observed BDEC depends on the relative geometry of dust and emitters (e.g. Natta+Panagia 1984, Disney+1989, Calzetti+1994)

Understand the physics behind the Cold gas - Balmer Decrement relation

Dust optical depth $\tau_V VS A_V$ in different geometries

Concas+ in prep.

See also Hunt et al. 2023

Summary

Using optical IFS and millimetre spectroscopy of local galaxies

- ★ Empirical relation cold gas from CO emission and dust extinction from $H\alpha/H\beta$ on kpc-scale
- ★ Variation with gas-phase metallicity (DGR or α_{CO} variation?)
- ★ Strong differences with previous work due to sample selection
- ★ $H\alpha/H\beta$ as a cold gas tracer in the absence of direct millimetre and submillimetre observations, test with EDGE-CALIFA data and example of resolved K-S relation.

