High-redshift radio galaxies with the International LOFAR Telescope (ILT)

Presenter: Marco Bondi Organization: INAF - IRA

The Low Frequency Array (LOFAR)

- Low Band Antenna (LBA; ~50 MHz)
- High Band Antenna (HBA; ~144 Mhz)
- Core stations (24, baseline 0.15-3 km)
- Remote stations (14, baseline 5-100 km)
- HBA: 6" resolution, rms ~80 µJy (8 hrs)

The Low Frequency Array (LOFAR)

- Low Band Antenna (LBA; ~50 MHz)
- High Band Antenna (HBA; ~145 Mhz)
- Core stations (24, baseline 0.15-3 km)
- Remote stations (14, baseline 5-100 km)
- HBA: 6" resolution, rms ~80 µJy (8 hrs)

Brienza+2021, NatAst

International LOFAR Telescope (ILT)

Resolution from 6" to 0.3" At z~1, from ~50 kpc to 2.5 Kpc

Delvecchio+2017

HBA: 144 MHz 38 Dutch stations 14 (+2) International stations: baselines up to ~ 2000 km

ILT Data Analysis: bottleneck

- Premises:
 - All LOFAR obs include the International Stations (IS)
 - Typically IS are NOT used

LOFAR papers 2013-2022

ILT papers 2013-2022

ILT Data Analysis: bottleneck

- Premises:
 - All LOFAR obs include the International Stations (IS)
 - Typically IS are NOT used

LOFAR papers 2013-2022

ILT papers 2013-2022

• **Issues**:

- Time and computer resources demanding
- A robust and reliable pipeline not available (until recently)
- Solution:
 - Long baseline pipeline (Morabito+2022)

https://github.com/lmorabit/lofar-vlbi/

ILT images: Radio Galaxies at z≥1 in the NEP Deep Field (Bondi+ in prep.)

$$z=1.61$$
 L_b= 6.7 x 10²⁷ W/Hz

ILT (48 hrs) 0".45 x 0".31 r.m.s ~ 18 µJy/beam S_p = 40 mJy/beam LOFAR (72 hrs) 6".0 x 6".0 r.m.s = 41 μ Jy/beam S_p = 1<u>50 mJy/beam</u> z=1.60 L_{R} = 4.7 x 10²⁷ W/Hz

ILT (48 hrs) 0".46 x 0".32 r.m.s ~ 20 μ Jy/beam S_p = 4.8 mJy/beam LOFAR (72 hrs) 6".0 x 6".0 r.m.s = 42 μ Jy/beam S_P = 106 mJy/beam

$$z=2.06$$
 $L_{p}= 2.5 \times 10^{27}$ W/Hz

ILT (48 hrs) 0".47 x 0".33 r.m.s ~ 20 μ Jy/beam S_p = 17 mJy/beam LOFAR (72 hrs) 6".0 x 6".0 r.m.s = 50 μ Jy/beam S_p = 73 mJy/beam z=3.03 L_{R} = 8.5 x 10²⁶ W/Hz

ILT (48 hrs) 0".57 x 0".42 r.m.s ~ 19 μ Jy/beam S_p = 6.0 mJy/beam LOFAR (72 hrs) 6".0 x 6".0 r.m.s = 40 μ Jy/beam S_P = 12 mJy/beam

Exploiting Deep Fields observations with the ILT: bright sub-mm galaxies in the NEP field

SMM ID	RA IRAC	Dec IRAC	S 850um	redshift	LIR	SFR	Mstar	f _{AGN}
	deg	deg	mJy		×10 ³⁹ W Hz ⁻¹	$M_{\odot} yr^{-1}$	$ imes 10^{10} M_{\odot}$	
3	268.18233	66.14292	23.2 ± 1.9	2.89 ± 0.15	8.82 ± 1.16	1965 ± 309	82.7 ± 15.8	SFG
15	267.92028	66.80276	12.1 ± 2.5	2.10 ± 0.80	2.73 ± 2.21	932 ± 796	4.4 ± 1.8	SFG
12	269.33760	65.92769	11.7 ± 3.2	2.59 ± 0.13	7.58 ± 0.94	2276 ± 312	29.7 ± 4.4	SFG
29	268.81288	66.73238	11.0 ± 1.8	3.38 ± 0.19	$1.98\pm, 0.54$	544 ± 144	5.8 ± 1.5	AGN
16	268.19279	66.10346	10.9 ± 2.9	3.21 ± 0.07	9.35 ± 0.83	2031 ± 235	172 ± 18	AGN/SFG
47	268.31280	66.82952	10.4 ± 1.7	$3.26\pm, 0.63$	8.21 ± 2.88	2037 ± 714	40.1 ± 33.9	AGN/SFG
14	269.56415	65.86654	10.1 ± 4.0	1.73 ± 0.09	2.57 ± 0.71	437 ± 132	131 ± 31	AGN/SFG
55	268.69986	66.58029	10.0 ± 1.8	3.13 ± 0.10	7.20 ± 0.69	1386 ± 133	154 ± 15	AGN/SFG
24	270.46358	66.57362	9.8 ± 2.8	2.12 ± 0.16	9.20 ± 1.76	3137 ± 590	38.5 ± 7.3	SFG
49	268.30263	66.98022	9.7 ± 2.2	2.57 ± 0.20	6.33 ± 1.74	1883 ± 522	17.1 ± 5.1	SFG
74	268.32154	66.84883	9.1 ± 1.7	2.99 ± 1.01	5.67 ± 2.92	1626 ± 870	$27,7 \pm 33.9$	AGN/SFG
77	268.23630	66.72278	9.0 ± 1.8	3.57 ± 1.13	5.52 ± 3.06	1428 ± 814	26.0 ± 23.3	AGN/SFG

- Selected all SMGs with S_{850-µm} ≥ 9 mJy, r<1.2 deg from field center, and robust SED fit from Shin+ 2022 catalog:
 - 12 objects: 1.7 < z < 3.5, SFR > 1000 M_a/yr
 - 11/12 detected in LOFAR 6" image (72hrs) with SNR>5 (1/7 with 4<SNR<5):
 - 0.16 mJy/b < S_{6"} < 1.6 mJy/b
 - ~8 x 10²⁴ W/Hz < L_{144MHz} < 5 x 10²⁵ W/Hz

Bright SMGs in the NEP field: Multiplicity

SMM ID	DA	Dao	EWHM	DA	F100-0	c	c	Mai	Min	DA	$\log T$
SIMINI ID	K/A	Dec	L. AA LITAT	P.A.	THIS	, 3 p	ST.	wiaj	IVIIII	FA	log 1 b
	deg	deg	arcsec	deg	mJy/beam	mJy/beam	mJy	arcsec	arcsec	deg	ĸ
3a	268.18213	66.14298	1.07×0.84	109	0.026	0.155	0.467	1.56	1.14	34	4.78
3b	268.18280	66.14323				0.303	0.421	0.75	0.42	153	
12a	269.33762	65.92764	0.54×0.39	174	0.013	0.112	0.180	0.45	0.24	27	5.55
12b	269.33786	65.92823				0.072	0.121	0.80	0.1	2	
14	269.56387	65.86684	0.54×0.39	173	0.013	0.075	0.176	1.11	0.1	159	5.41
15	267.92029	66.80301	0.38×0.26	176	0.020	0.209	0.549	0.47	0.35	5	5.86
16	268.19272	66.10365	0.56×0.41	172	0.013	0.214	0.479	0.69	0.34	109	5.70
24	270.46381	66.57376	0.27×0.19	179	0.026	0.305	1.152	0.43	0.33	136	6.17
29	268.81271	66.73252	0.58×0.43	172	0.015	0.176	0.234	0.31	0.23	102	5.93
47a	268.31247	66.82954	0.64×0.47	168	0.017	0.193	0.285	0.38	0.34	84	5.74
47b	268.31287	66.82968				0.150	0.263	0.55	0.38	121	
49	268.30255	66.98044	0.62×0.47	168	0.019	0.125	0.192	0.50	0.31	157	5.41
55a	268.70044	66.58057	0.57×0.42	172	0.015	0.231	0.323	0.37	0.26	175	5.91
55b	268.70010	66.58025				0.073	0.264	0.99	0.63	2	
55c	268.69882	66.58058				0.057	0.134	0.83	0.21	89	
74	268.32144	66.84910	3.11×1.66	111	0.030	0.096	0.156	3.03	1.10	130	4.04
77	268.23682	66.72313	0.37×0.26	176	0.018	0.105	0.390	0.69	0.34	134	5.65

Bright SMGs in the NEP field: Multiplicity

- Multiple components: 3 (arcsec scale) + 4 (sub-arcsec scale)

Bright SMGs in the EDFN: radio AGN

1991): 7 SMGs with log(T_b)>5.6

T_b as AGN proxy

• Maximum brightness temperature for a normal galaxy with thermal and non thermal emission (Condon 1991):

$$T_{\rm b} = T_{\rm e} \left(1 - e^{-\tau_{\rm ff}}\right) \left(1 + 10 \left(\frac{\nu}{1 \,{\rm GHz}}\right)^{0.1+\alpha}\right)$$

• Normal galaxies have $T_b \le 10^5$ for $\nu \ge 1$ GHz

T_b as AGN proxy

• Maximum brightness temperature for a normal galaxy with thermal and non thermal emission (Condon 1991):

$$T_{\rm b} = T_{\rm e} \left(1 - e^{-\tau_{\rm ff}}\right) \left(1 + 10 \left(\frac{\nu}{1 \,{\rm GHz}}\right)^{0.1+\alpha}\right)$$

- Normal galaxies have $T_{b} \leq 10^{5}$ for $v \geq 1$ Ghz
- Sample of ~150 HLIRGs in the Lockman Hole (Sweijen+2023, in press), 33% detected with ILT

Class	$N_{ m obj}$	$T_{\rm b} > 10^{5.7}$	$T_{\rm b}>10^{5.6}$	$T_{\rm b} > 10^{5.5}$
SFG	25 (103)	10	17	24
RQ AGN	17	11	15	17
LERG	4	4	4	4
HERG	3	3	3	3
Unclassified	2	1	1	2
Total	51 (103)	29	40	50

Bright SMGs in the EDFN: radio AGN

1991): 7 SMGs with log(T_b)>5.6

Radio vs SED SFRs & main sequence

SFR from radio obtained from radio flux at 6" resolution after subraction of multiple comp and/or AGN comp: ~5 times lower than that from SED fitting

Radio vs SED SFRs & main sequence

SFR from radio obtained from radio flux at 6" resolution after subraction of multiple comp and/or AGN comp: ~5 times lower than that from SED fitting Distance of a galaxy from the star-forming galaxy main sequence (MS) in the SFRstellar mass plane, removing effects of different stellar mass and z evolution

Summary

- ILT allows imaging the radio sky at 144 Mhz with resolution down to ~0.3" with average 1σ sensitivity of ~50 µJy/beam for 8 hrs (~10-15 µJy/beam for Deep Fields).
 - Necessary for proper multi- λ identification
 - <10% of radio sources have sizes > 10", ILT allows to study the details of the remaining 90% (widefield imaging necessary)
- To process a single target with the long-baseline pipeline:
 - e.g. 32-48 cores, Ram ~384 G, disk space >15 T
 - 4-8 days of processing, including selfcal and imaging
- A significant fraction of the sky (e.g. LoTSS) has already been observed with the ISs but not processed. Your favoutite source might be there !