Investigating the High-Energy Emission in the Gamma-ray Emitting CSO TXS 1146+596

Ettore Bronzini^{1,2}

¹Department of Physics and Astronomy, University of Bologna ²INAF, Astrophysics and Space Science Observatory Bologna

ettore.bronzini@inaf.it

G. Migliori, C. Vignali, M. Sobolewska,F. D'Ammando, M. Giroletti, M. Orienti, G. Principe,A. Siemiginowska, L. Stawarz, K. Balasubramaniam

BOLOGNA FRIENPS RADIO GALAXIES

1-2 Marzo, 2023

BOLOGNA, IRA

Scientific Organization Committee Invited Speakers

R. D Baldi – Co-Chair, G. Giovannini – Co-Chair, M. Brienza, G. Migliori, E. Torresi

Local Organization Committee R. D. Baldi , E. Bronzini, C. Nanci, C.

Spingola

E. Liuzzo, P. Rossi, M. Dadina, P. Grandi, I. Delvecchio, M. Brienza, B. Balmaverde, G. Cresci, G. Castignani F. Ubertosi, F. Tavecchio, I,

Donnarumma, T. Sbarrato, M. Bondi

- (2) TXS 1146+596
- (3) Results
 - X-ray analysis
 - Ambient medium role
 - SED modeling

(4) Conclusions

• Investigating the nature of X- and γ -ray emission

• Probing the environment in which CSOs are expanding (X-ray imaging)

• Inferring the physical properties using the broadband SED

X-RAY ANALYSIS

Investigating the HE emission in the γ -ray emitter CSO 1146+596

6/14

E. Bronzini

Chandra-NuSTAR joint fit s⁻¹ keV⁻¹) • Fitting parameters: 10-4 AGN feedback? keV² (Photons cm⁻² • $N_H = 3.49^{+1.28}_{-1.04} \times 10^{22} \,\mathrm{cm}^{-2}$ • $\Gamma = 1.92^{+0.34}_{-0.33}$ • $kT_1 = 0.32^{+0.17}_{-0.09} \text{ keV}$ (data-model)/error • $kT_2 = 1.16^{+0.31}_{-0.18}$ keV • $E_{Fe} = 6.73^{+0.24}_{-0.35} \text{ keV} (\sigma = 10 \text{ eV})$ -2 • $\mathscr{L}_{2-10 \,\text{keV}} = 6.0 \, (\pm 0.4) \times 10^{40} \,\text{erg s}^{-1}$ _4 5 10 Energy (keV) Investigating the HE emission in the γ -ray emitter CSO 1146+596 E. Bronzini 7/14

Model: absorbed power-law model including Galactic absorption, the intrinsic absorption of the source, two thermal emitting gas, and a Gaussian line

• Extended X-ray emission up to 2.3 kpc (>> radio LS), i.e. galaxy scales

X-ray analysis results

1146+596 data and unfolded spectrum

BROAD-BAND SED MODELING

9/14

Investigating the HE emission in the γ -ray emitter CSO 1146+596

E. Bronzini

- We reported, for the first time, on the detection of 1146+596 with *NuSTAR* at energies >10 keV
- Joint *Chandra* and *Nustar* data allowed us to unveil the true X-ray continuum shape
- First evidence for a multi-T gas component in 1146+596
- SED modeling (multi-zone leptonic models):
 - Model 1 —> sync+SSC, assuming γ_{max} too high?? —> $\mathscr{L}_{jet} = 1.3 \times 10^{43} \, erg \, s^{-1}$
 - Model 2 —> sync+SSC+cor —> $\mathscr{L}_{jet} = 8.2 \times 10^{43} \, \text{erg s}^{-1}$
 - Mukherjee+17 argued that jets with power ≤1043 erg s⁻¹ may be too weak to break out the ISM confinement
- Separation between obscured/frustrated and unobscured/freely-expanding sources not so straightforward in the linear size vs. radio power plane

SED modeling

Description	Symbol	Unit	Jet		Mini lobe
			Model 1	Model 2	Model
(1)	(2)	(3)	(4)	(5)	(6)
I	nput Parameters	5			
Radius of the emitting region	$\log_{10} R$	cm	17.47	17.40	18.74
Lorentz factor	Г		1.04	1.11	1.00
Magnetic field	В	mG	10	9	10
Emitting electron number density	$\log_{10} \mathcal{N}$	cm ⁻³	0.40	1.2	0.09
Low-energy slope	p_1		1.9	1.8	2
High-energy slope	p_2		2.9	2.9	_
Lorentz factor (min)	$\log_{10} \gamma_{\min}$		2	1	1
Lorentz factor (break)	$\log_{10} \gamma_{\text{break}}$		4	4	_
Lorentz factor (max)	$\log_{10} \gamma_{\rm max}$		8	6	3.4
Energy density ratio of magnetic field and electrons	U_B/U_e		3e-3	2e-3	1
Additional Po	ower-law X-Ray	Component			
Photon index	Г			1.9	
Luminosity	$\mathcal{L}_{2-10 \text{ keV}}$	$erg s^{-1}/10^{41}$	—	0.8	—
	Jet Power				
Radiative power	$\mathcal{L}_{\mathrm{rad}}$	$erg s^{-1}/10^{41}$	4.1	2.2	0.40
Electrons kinetic power	\mathcal{L}_{e}	$erg s^{-1}/10^{42}$	3.5	6.4	1.6 <i>e</i> -3
Protons kinetic power	\mathcal{L}_{P}	$erg s^{-1}/10^{43}$	0.92	7.6	5.4e-3
Total kinetic power	\mathcal{L}_{kin}	$erg s^{-1}/10^{43}$	1.3	8.2	5.6e-3
Magnetic power	\mathcal{L}_B	$erg s^{-1}/10^{40}$	0.97	1.0	0.16
Total jet power	\mathcal{L}_{iet}	$erg s^{-1}/10^{43}$	1.3	8.2	9.8e-3

Investigating the HE emission in the γ -ray emitter CSO 1146+596

E. Bronzini

