Radio Galaxies with the Event Horizon Telescope

Elisabetta Liuzzo INAF-Istituto di Radioastronomia - Bologna/ Italian node of the European ALMA Regional Centre (ARC)

Bologna, 1 marzo 2023

The EHT Italian members

Giacomo Principe

- EHT AGN WG
- EHT Multiwavelength Science WG

Marcello Giroletti

• EHT Multiwavelength Science WG

Event Horizon Telescope

Event

Event Horizon

Event Horizon Telescope

Results on BH shadow (~4.5R)

Different kinds of beasts

M87*

EHTC+

Sgr A*

Results on BH shadow ($\sim 4.5R_{s}$)

... but similar ring structure

ISTITUTO NAZIONALE

Results on BH accretion:

Results on BH accretion

Where do mm photons originate?

EHTC M 87 Paper V, 2019

EHTC SgrA* Paper V, 2022

 $R_{\rm high} = 160$ MAD $[GM/c^2]$ 2 10 0 4 6 8 12 $[GM/c^2]$ SANE GM/c^2 ISCO To observer $^{-6}_{0}$ 2 4 6 8 10 12 $[GM/c^2]$

Event Horizon Telescope

Results on SGR A* accretion

T is the observer inclination vs the disk's spin. EHTC Sgr A* Paper V, 2022 $i = 10^{\circ} i = 30^{\circ} i = 50^{\circ} i = 70^{\circ} i = 90^{\circ}$

> MAD models with **i < 30 deg** a = 0.5, 0.94

Agreement with GRAVITY results

Results on SGR A* accretion

Relation with the large scale Bubbles?

Fermi

Ackermann+ 2014

eRosita

Predhel+ 2021

EHT AGN scales: launching region

Event

Results on AGN jet launching region

- **BH launched jet:** Blandford & Znajek (1977)
- Disk launched jet: Blandford & Payne (1982)
- Combination

Results on AGN jet launching region

- BH launched jet: Blandford & Znajek (1977)
- Disk launched jet: Blandford & Payne (1982)
- Combination Ordered. elical large-scale gnetic magnetic field eld? MIND IFT Flux Corona loops (B << 1) Reconnections **Disordered**, turbulent Accretion disk magnetic field Black hole (β >> 1) **Toroidal magnetic field?** Image credit: Dobbie+ 2009

M87 EHT data in agreement with BZ jet (from multiband constraints)

Results on BH magnetic field (~4.5 R_s)

M87 BH Polarization EHT collaboration: <u>M87 Paper VII, VIII 2021</u>

Important constraints on the Magnetic field structure and plasma properties!!

Poloidal magnetic field and MAD models

Low fractional linear polarization

Depolarization due to Faraday rotation internal to the emission region

- Electron density: n_e~ 10⁴⁻⁷ cm⁻³
- Magnetic field strength: B ~ (1-30) G
- Electron temperature: $T_e = (1-12) \times 10^{10} \text{ K}$

EHT AGN scales: acceleration and collimation

Bologna, 1 March 2023

Results on jets: Cen A ($\sim 100R_s$)

Results on jets: J1924-2914 (~1000 R_s)

<u>Issaoun et al. 2022</u>

- Very good EHT blazar calibrator for Sgr $A^* \rightarrow$ little variability on time scale of several days
- 3 compact component in NW direction
- From multiband data, helical jet with a gradual clockwise rotation of the jet projected position angle of about 90° between 2.3 and 230 GHz

Results on jets: J1924-2914 (~1000 R)

- <u>Issaoun et al. 2022</u>
 - Linearly polarized features separated by the total intensity **ones** \rightarrow substructure within the shock
 - Toroidal magnetic field in the $core \rightarrow helical B excluded or$ absence of time variability of PA
 - Fermi source→ excellent to study high-energy emission vs jet morphology and kinematics at millimeter wavelengths.

Results on jets: $3C 279 (~1700 R_s)$

Kim et al. 2020

Peculiar jet structures

 → the core is the
 northern cc

 → Bending jet?

 gamma-rays activity during EHT observations → analysis of multiband data close in time

Results on jets: 3C 279 (~1700 R_s)

Kim et al. 2020

 Rapid flux variability and proper motion 1.1 -1.7 µas day⁻¹

 \rightarrow shocks or instabilities in a bent, possibly rotating jet

Results on jets: NRAO 530 (~4000 R_s)

- Gamma-ray flat spectrum radio quasar at z=0.902 → Most distant EHT imaged object
- Wiggling jet → PA changes at lower freq for jet precession or flow instabilities
- Helical magnetic field → change in EVPA along the jet
- Shift of polarized emission → different ordering of B or strong interaction with surrounding?

Summary

- BH physics → evidence of rotating BH
- Accretion → MAD models are preferred
- Launching jet → BZ models are preferred
- Magnetic field → when the transition between toroidal/poloidal/helical ?
- Along the jet → edge
 brightning structures + bending
 + helical jet + knots interesting
 for high-energy sources

EHT is in evolution

2017 - Only EHT 2017 published data!!

- VLBI at 1.3 mm
- 8 antennas
- Typical angular resolution of $25 \,\mu$ as
- Continuum and polarization

2018

• 2017 + GLT

2019-2020

• No observations

2021-2022- 2023

• 2018 + NOEMA + Kitt Peak 12m tel

The future is also higher frequencies and space VLBI observations!

The future is also more EHT + multi-band data

Event Horizon Telescope

Bologna, 1 March 2023

INAF

ISTITUTO NAZIONALE DI ASTROFISICA

Backup slides

