CEASAR Hands' On Workshop for Data Providers CHOW4DP – 22-23 February 2023 – Tor Vergata

TAP / ObsTAP an example of metadata curation

CAESAR NODE2000

Project Prime:

Project Partners:

- TAP
 - TAP_SCHEMA
- ObsTAP
 - obscore table

The IVOA TAP Recommendation

IVOA – International Virtual Observatory Alliance

https://www.ivoa.net

TAP - Table Access Protocol

https://www.ivoa.net/documents/TAP/20190927/index.html Recommendtion == IVOA approved standard

Schema	Name
TAP_SCHEMA TAP_SCHEMA TAP_SCHEMA TAP_SCHEMA TAP_SCHEMA TAP_SCHEMA	+ schemas columns tables keys kev columns

The table access protocol (TAP) defines a service protocol for accessing general table data, including astronomical catalogs as well as general database tables. Access is provided for both database and table metadata as well as for actual table data. [...]

Hows

A dedicated schema in the database for domain context metadata: TAP_SCHEMA (works like a specific INFORMATION_SCHEMA)

TAP_SCHEMA – column metadata

column name	type	not-null		
table_name	string	true		
column_name	string	true		
datatype	string	true		
arraysize	string	false		
xtype	string	false		
"size"	integer	false		
description	string false			
utype	string	false		
unit	string	false		
ucd	string	false		
indexed	integer	true		
principal	integer	true		
std	integer	true		
column_index	integer	false		

Description of the column content, roughly:

- Human
 - {description}
- Technical
 - {datatype, arraysize, xtype}
- Semantic
 - {unit, UCD, utype}
- Operational
 - {indexed, principal, std, column_index}

```
column_name
datatype
arraysize
xtype
description
unit
ucd
```

```
"obs_start"
"char"
"*"
"timestamp"
```

"timestamp of the start of the observation"

"time.start;obs"

ObsTAP, or...

Observation Data Model Core Components and its Implementation in the Table Access Protocol

bounds + bounds

Bounds ResolutionBounds

+ characterisatio

[...] integrates data modeling and data access aspects in a single service and is named ObsTAP. [...] the Observation Data Model Core Components (ObsCoreDM) defines the core components of queryable metadata required for global discovery of observational data. [...]

The combination of the ObsCoreDM with TAP is referred to as an ObsTAP service. [...

https://www.ivoa.net/documents/ObsCore/20170509/index.htm

How?

A specific table structure (within a standardised schema): ivoa.obscore Target + Rame: string + Rame: str

Provenance

SpectralAxis

CharacterisationAxis

calibStatus : Calibration

TimeAxis

ObservableAxis

PolarisationAxis

SpatialAxis

Characterisation

Ivoa.obscore – model metadata

Column Name	Unit	Туре	Description	example	
dataproduct_type	unitless	String	Logical data product type (image etc.)	Observational Core Data Model	
calib_level	unitless	enum integer	Calibration level {0, 1, 2, 3, 4}		
obs_collection	unitless	String	Name of the data collection		
obs id	unitless	String	Observation ID		
obs_publisher_did	unitless	String	Dataset identifier given by the publisher	dataset access	
access_url	unitless	String	URL used to access (download) dataset		
access_format	unitless	String	File content format (see in App. BB.5.2)		
access_estsize	kbyte	integer	Estimated size of dataset in kilo bytes	dataset access	
target name	unitless	String	Astronomical object observed, if any		
s_ra	deg	double	Central right ascension, ICRS		
s_dec	deg	double	Central declination, ICRS		
s_fov	deg	double	Diameter (bounds) of the covered region		
s_region	unitless	String	Sky region covered by the data product (expressed in ICRS frame)	> spatial	
s_xel1	unitless	integer	Number of elements along the first spatial axis		
s_xel2	unitless	integer	Number of elements along the second spatial axis		
s resolution	arcsec	double	Spatial resolution of data as FWHM		
t_min	d	double	Start time in MJD		
t_max	d	double	Stop time in MJD		
t_exptime	S	double	Total exposure time	≻ temporal	
t_resolution	s	double	Temporal resolution FWHM	13111/93131.	
t_xel	unitless	integer	Number of elements along the time axis		
em_min	m	double	Start in spectral coordinates		
em_max	m	double	Stop in spectral coordinates		
em_res_power	unitless	double	Spectral resolving power	├ spectral	
em_xel	unitless	integer	Number of elements along the spectral axis	J . Unified	
o_ucd	unitless	String	UCD of observable (e.g. phot.flux.density, phot.count, etc.)		
pol_states	unitless	String	List of polarization states or NULL if not applicable	Content Controlled	
pol_xel	unitless	integer	Number of polarization samples	Vocabulary	
facility_name	unitless	String	Name of the facility used for this observation	Descriptor Vocabulary	
instrument_name	unitless	String	Name of the instrument used for this observation		

CEASAR Hands' On Workshop for Data Providers CHOW4DP – 22-23 February 2023 – Tor Vergata

Project Prime:

Project Partners:

