

SWGO: the Southern Widefield of view Gamma-ray Observatory

Andrea Chiavassa Università degli Studi di Torino & INFN

ASTRI-LHAASO Workshop, Milano 7-8 March 2023

The Southern Wide-field Gamma-ray Observatory

- SWGO: The Southern Wide-field Gamma-ray Observatory is a gamma-ray observatory based on ground-level particle detection, with close to 100% duty cycle and order steradian field of view.
- ◎ SWGO is currently in the R&D phase.
- \bigcirc Located in South America at a latitude between 10° and 30° south.
- ◎ At an altitude of 4.4 km or higher.
- O Based primarily on water Cherenkov detector units.
- ◎ With a high fill-factor core detector with area considerably larger than HAWC and significantly better sensitivity, and a low-density outer array.

SWGO Science cases

O Detection of short timescale phenomena

 \rightarrow Low energy threshold for detection of short timescale (<1 hr) transient events down to 100 GeV.

O Search for PeVatrons

 \rightarrow Improved sensitivity up to \sim PeV to search for Galactic particle accelerators.

O PWNe and Gamma-ray Halos

→ Unique potential for accessing the high-energy end of the Galactic Population.

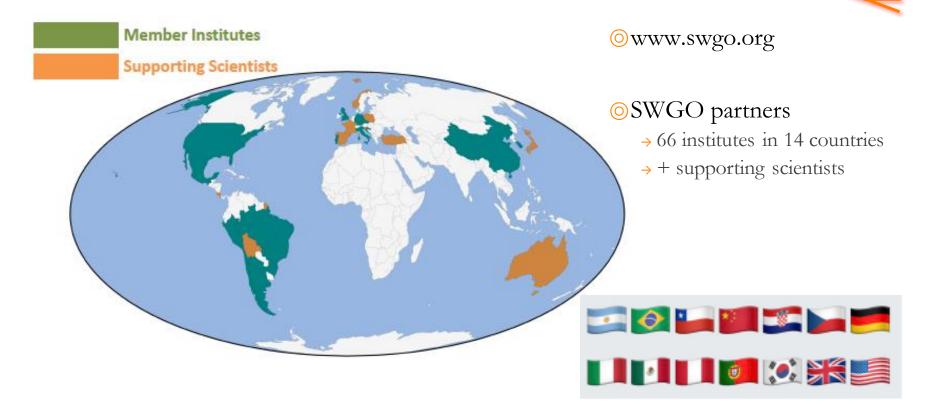
Oark Matter and Diffuse Emission

→ Unique access to the Galactic Center and Halo at the high-energy end of the spectrum

O Cosmic Rays

- → Complement to LHAASO for anisotropy studies, with the possibility of reaching low angular scale
- → Good muon counting implies good mass resolution for composition studies.

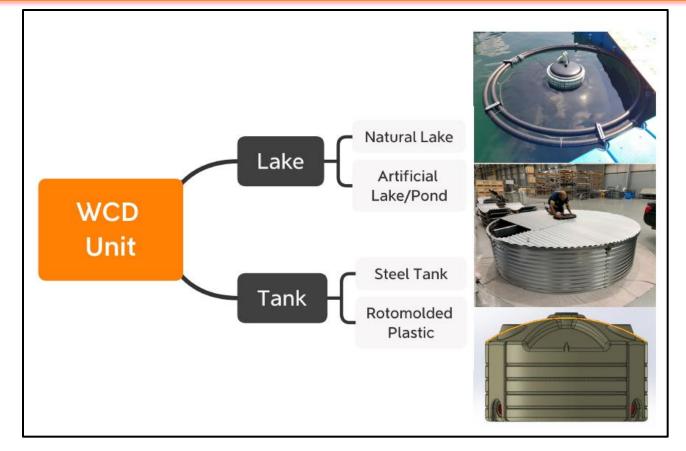
SWGO Scientific requirements


Design Implications

- O Decreasing of the low-energy threshold to 100 GeV, at 10⁻¹¹ erg/cm² s (5 years)
 - → Combination of improved design and background rejection, plus high-altitude site (>4400 m a.s.l.)
- Large collection area (~km²) to achieve good sensitivity above 1 TeV (up to few PeV)
 - \rightarrow Aim to push sensitivity $<10^{-13}$ erg/cm² s in the 100-300 TeV energy range
- Muon counting capability
 - → For cosmic rays studies and background rejection

 \bigcirc Improved angular (0.2°) and energy resolutions (<30%) above 10 TeV.

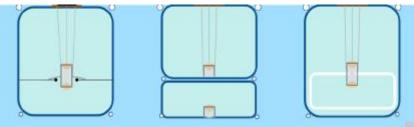
SWGO Collaboration



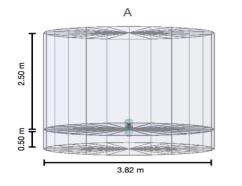
SWGO R&D Phase

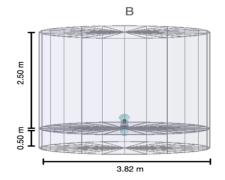
◎ The primary deliverable of the SWGO R&D phase is a detailed project proposal which will form the basis of funding requests in the partner countries and provide the overall plan for construction and operation

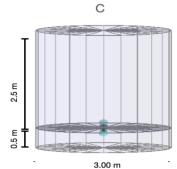
	SWGO R&D Phase Milestones	
\checkmark	M1	R&D Phase Plan Established
\checkmark	M2	Science Benchmark Cases Chosen
\checkmark	M3	Reference Configuration & Options Defined
\checkmark	M4	Site Shortlist Complete
\checkmark	M5	Candidate Configurations Defined
	M6	Performance of Candidate Configurations Evaluated
	M7	Preferred Site Identified
	M8	Design Finalised
	M9	Construction & Operation Proposal Complete



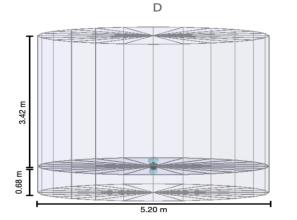
- Detector prototypes are in preparation:
 Tank option: Milano, HAWC, Salta, Chile, Perù
 - → Lake option: LHAASO, Heidelberg.

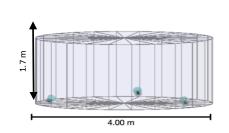


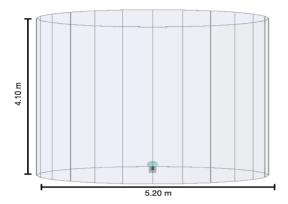


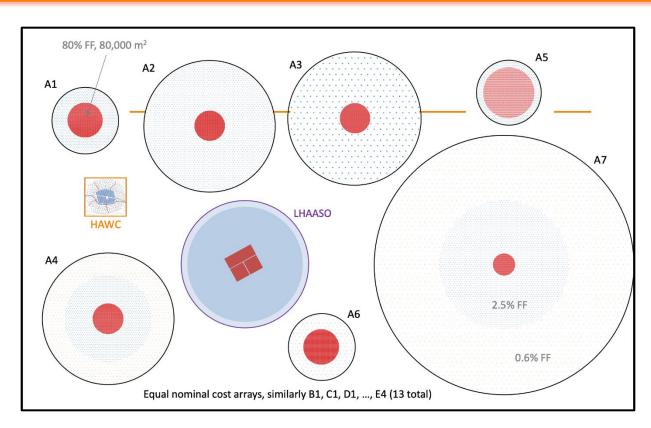


Comparison of the performances of different tank units and layouts

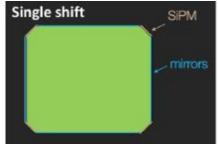





Е



Candidate configurations



- Baseline is a single PMT located at the centre of both upper (upward facing) and lower (downward facing) layers
- ◎ 8" 10" PMT
- Alternative dome containing 73" PMT
 - Low cost
 - Dynamic range
- Wavelength shifters

Site Visit Team

October 2022 a SWGO team visited the sites proposed by Argentina, Chile and Perù and met the local institutions.

→ Requirements:

height above 4400 m, availability of a km² surface.

→ Access, water availability, power, data transfer, nearby villages.

→ Perù

Yanque (tanks), Imata (tanks/pond) and Sabinacocha (lake)

→ Chile

Pampa La Bola (tanks), Pajonales (tanks)

→ Argentina

✓ Cerro Vecar (tanks) and Alto Tocomar (tanks)

A report by the team is in preparation The final decision is expected by the end of 2023

Imata – 4500 m

Cochauma – 4800 m

Perù

Cochachaca – 4800 m

Sibinacocha – 4850 m

Pajonales – 4600 m

Cerro Vecar – 4850 m

Alto Tocomar – 4430 m

Conclusions

- Strong motivation for a wide field of view, high duty cycle observatory in the Southern hemisphere
- O Sinergies with CTA-South
- Complementary location for all sky studies with LHAASO and HAWC
 O
- ◎ End of 2023 preferred site identified
- ◎ Half 2024 Design Finalised
- \bigcirc 2025-26 \rightarrow engineering array
- \bigcirc 2027-30 → construction phase