Cherenkov Telescope Array Observatory: another future player in the Northern sky

Roberta Zanin – CTAO Project Scientist

Roberta.Zanin@cta-observatory.org

- Introduction to CTAO: why and how
- CTAO array performance
- Performance comparison: CTAO ASTRI-MiniArray LHAASO
- Conclusions

Design drivers for next generation IACT facility

Full sky coverage

CTA North ORM La Palma, Spain

CTA South ESO, Chile

CTA Observatory

- Proposal driven observatory: standard proposals & Key Science Projects
- Proposals evaluated on scientific merits by a Time Allocation Committee

CTA Observatory

CTAO Construction phase is about to start

- CTAO construction scope is agreed
- The construction phase will start with the establishment of the final legal entity:

The Board of Governmental Representatives Approves the CTAO's Cost Book and Scientific & Technical Description

CTAO European Research Infrastructure

- **Consortium** (ERIC)
 - by Summer / September 2023
- last about 5 yr

• Early science operations foreseen during the construction phase

Announcement

CTAO: 4 places of operations

Access to observing time mainly allocated to CTAO ERIC members

3 telescope designs

The two initial CTAO arrays: the Alpha Configuration

CTAO Northern Array

- 4 LSTs + 9 MSTs
- 0,025 km² footprint
- focus on extra-Galactic science

CTAO Southern Array

- 14 MSTs + 37 SSTs
- 3 km² footprint
- focus on Galactic science

IACT arrays & particle shower detector: complementary techniques

- Each of these detection techniques has its own strenght: angular resolution versus sensitivity (both energy dependent) & also different duty cycles
- Just their complementarity can help addressing the still open questions:
 - source discoveries vs detailed physical studies
 - different performances in distinct energy bands

IACT arrays & particle shower detector: complementary techniques

morphological studies will do the game thanks to the excellent angular resolution

CTAO will be able to detect the spectral cutoff at ~50 TeV in 50 hr at more than 5σ

not enough to disentangle between hadronic or leptonic origin

Credits to G. Verna

Credits to S. Vercellone • Key point: these instruments have different schedules

Comparison between future facilities

- Particle shower detectors and IACT arrays have both been proven successful
- Larger scientific exploitation can be obtained by fostering synergies between the future facilities of both kinds keeping in mind the access policies and their construction schedules
- IACT arrays are coming in with excellent angular and energy resolution, whereas LHAASO and potentially SWGO (can) provide an unprecendented sensitivity at >>50 TeV

Preparing our future...

- We should certainly explore synergies CTAO Northern array and ASTRI both during early science and later one
 - without discussing the access policies of the two facilities, we should aim to guarantee same data model/format to be able to combine the data (well on track thanks to VODF)
- Same argument applies to LHAASO as well but there more effort is needed

Thank you