

Outline

- GRB 221009A
- Axion-like particles
- Results with ALP model
- Lorentz Invariance Violation
- Results with LIV model
- Conclusions

GRB 221009A

GRB 221009A

- Extremely luminous Gamma Ray Burst (GRB) at *z* = 0.151
- Observed by:
 - Swift, Fermi
 - LHAASO at $E \simeq 18$ TeV within 2000 s after the initial burst
 - Carpet-2 at $E \simeq 251$ TeV at 4536 s after Fermi-GBM trigger

BUT strong EBL absorption for $E \gtrsim 14$ TeV at z = 0.151 within Conventional Physics (CP)

EBL	BL 15 TeV		$18\mathrm{TeV}$		$100\mathrm{TeV}$		251 TeV	
	$ au_{ m CP}$	$P_{\rm CP}$	$ au_{ m CP}$	$P_{\rm CP}$	$ au_{ m CP}$	$P_{ m CP}$	$ au_{ m CP}$	$P_{\rm CP}$
\mathbf{FR}	10.1	4×10^{-5}	14.1	7×10^{-7}	333	2×10^{-145}	15411	~ 0
G	9.4	8×10^{-5}	13.1	2×10^{-6}	246	2×10^{-107}	9502	~ 0
SL	12.8	3×10^{-6}	18.3	10^{-8}	220	3×10^{-96}	>9251	~ 0

τ_{CP} -> optical depth; P_{CP} -> photon survival probability
FR -> EBL model by Franceschini & Rodighiero 2017
G -> EBL model by Gilmore et al. 2012
SL -> EBL model by Saldana-Lopez et al. 2021

Warning!!!

- Our **results** are **based on**:
 - LHAASO event @ 18 TeV
 - Possible **Carpet-2** event @ 251 TeV

More **solid conclusions** will be drawn **when** the **SED** is **known**

QUESTION: How can we have detected this GRB at $E \simeq 18$ TeV, 251 TeV?

ANSWER:

with **axion-like particles**(ALPs) !!!

Axion-like particles

Axion-like particles (ALPs)

- Predicted by String Theory
- Very light particles $a (m_a < 10^{-8} \text{ eV})$
- Spin o
- **Interaction with** two **photons** (coupling g_{ayy})
- Interactions with other particles discarded
- Possible candidate for dark matter
- Induce the change of the polarization state of photons

ALPs in astrophysical contest

- ALPs very elusive in laboratory experiments (low coupling) → astrophysical environment is the best opportunity to study ALPs and ALP effects (for free)
- Photon/ALP beam in the VHE band $E >> m_a$
- For $E < 10 \text{ GeV} \rightarrow$ negligible photon absorption due to EBL
 - Photon-ALP interaction produces effective photon absorption
- For E > 10 GeV \rightarrow photons absorbed by EBL ($\gamma\gamma \rightarrow e^+e^-$), **ALPs** are **not absorbed**
 - Photon-ALP oscillations increase medium transparency
- HINTS at ALP existence:
 - Explain how flat spectrum radio quasars (FSRQs) can emit up to 400 GeV F. Tavecchio, M. Roncadelli, G. Galanti and G. Bonnoli, Phys. Rev. D, 86, 085036 (2012) [arXiv: 1202.6529].
 - Solve the anomalous redshift dependence of blazar spectra
 G. Galanti, M. Roncadelli, A. De Angelis, G. F. Bignami, MNRAS 493, 1553 (2020) [arXiv: 1503.04436].
 - GRB 221009A?
 G. Galanti, L. Nava, M. Roncadelli and F. Tavecchio, arXiv:2210.05659.

ALP-induced irregularities

 Spectral effects investigated in: D. Wouters, P. Brun, Phys. Rev. D 86, 043005 (2012).
 Fermi-LAT Collaboration, Phys. Rev. Lett. 116, 161101 (2016).
 CTA Consortium, JCAP 02, 048 (2021).

Polarization effects studied in:

G. Galanti, Phys. Rev. D 107, 043006 (2023).

G. Galanti, M. Roncadelli, F. Tavecchio, E. Costa, arXiv:2202.12286.

• Photon-ALP conversion probability $P_{\gamma \rightarrow a}(E, m_a, g_{a\gamma\gamma}, B)$

- Highlighted zones predict spectral irregularities and polarization features in observational data
- Constraints on $g_{a\gamma\gamma}$ and m_a but the firmest is $g_{a\gamma\gamma} < 6.6 \times 10^{-11} \text{ GeV}^{-1}$ for $m_a < 0.02 \text{ eV}$ (CAST collaboration, 2017)

RED AREA:

• Spectral effects investigated in:

G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, MNRAS 487, 123 (2019) [arXiv:1811.03548].

G. Galanti, F. Tavecchio, M. Landoni, MNRAS 491, 5268 (2020) [arXiv:1911.09056].

• Polarization effects studied in:

G. Galanti, Phys. Rev. D 107, 043006 (2023) [arXiv:2202.11675]. γ : photon a: ALP absorption: $\gamma + \gamma_{\text{Soft}} \rightarrow e^{\dagger} + e^{\dagger}$ γ_{Soft} : EBL

$B_{\text{host}} = O(10) \, \mu \text{G}$

Host galaxy:

G. Galanti, L. Nava, M. Roncadelli, F. Tavecchio, arXiv: 2210.05659.

Soft

g_{aγy}: γγa coupling

E: y electric field

 $d_{ay} = g_{ayy} E B a$

B: external magnetic field

 $B_{\rm ext} = O(1) \, \rm nG$

A. J. Levan et al., arXiv: 2302.07761.

 $B_{\rm GRB} = O(1-10^4) \, {\rm G}_{\rm M} \, {\rm G$

GRB:

G. Galanti, L. Nava, M. Roncadelli, F. Tavecchio, arXiv: 2210.05659.

Milky Way:

D. Horns, L. Maccione, M. Meyer et al., Phys. Rev. D, 86, 075024 (2012) [arXiv: 1207.0776].

G. Galanti, F. Tavecchio, M. Roncadelli, C. Evoli, MNRAS 487, 123 (2019) [arXiv: 1811.03548].

B_{MW} = *O*(1-5) µG

Extragalactic space:

G. Galanti and M. Roncadelli, Phys. Rev. D 98, 043018 (2018) [arXiv: 1804.09443].

G. Galanti and M. Roncadelli, JHEAp, 20 1-17 (2018) [arXiv: 1805.12055].

γ-ALP conversion for GRB 221009A

GRB:

- **Negligible** γ -ALP conversion even with parameters maximizing $P_{\gamma \rightarrow a}$
 - B'_{GRB} = 2 G, distance R = 2 x 10¹⁷ cm, Γ = 45 at t~2000 s
 - \rightarrow γ-ALP beam propagation length $\Delta R' \sim R/\Gamma \sim 5 \times 10^{15}$ cm

Host Galaxy:

- **Disk-like galaxy** observed **edge-on** with **GRB** in the **center** (Levan+2023). We take:
 - i) **Starburst** galaxy -> M82 as a model (Lopez-Rodriguez+2021) -> $B_{host} = O(20-50) \ \mu G$
 - ii) **Spiral** galaxy (Beck2016) -> $B_{host} = O(5-10) \mu G$

Extragalactic space:

- **Domain-like model** for B_{ext} (Galanti & Roncadelli, 2018) -> limits: 10⁻⁷ nG < B_{ext} < 1.7 nG on $L_{\text{dom}} = O(1)$ Mpc (Pshirkov+2016). We take:
 - i) $B_{ext} = 1 \text{ nG}$ with 0.2 Mpc < L_{dom} < 10 Mpc: favored by (Rees & Setti, 1968; Kronberg+1999)
 - ii) **B**_{ext} < 10⁻¹⁵ G -> very **conservative** scenario

Milky Way:

• B_{MW} map by Jansson & Farrar (Jansson & Farrar, 2012a,b)

Total Effect:

• γ -ALP interaction in **all media** \rightarrow **final photon survival probability** P_{ALP}

Results with ALP model

ALP effect – Starburst galaxy

Lorentz Invariance Violation

Lorentz Invariance Violation (LIV)

- Predicted by quantum gravity models for $E > 10^{19} \text{ GeV}$ (Mattingly 2005)
- Effects on standard physics processes Coleman&Glashow 1999; Jacobson+2003; Liberati 2013):
 - Photon decay
 - Photon splitting
 - **Modification of dispersion relations**
- Modified photon dispersion relation

 $E^{2} - p^{2} = -\frac{E^{n+2}}{E_{\text{LIV}}^{n}}$ $E \rightarrow \text{energy}$ $p \rightarrow \text{momentum}$ $E_{\text{LIV}} \rightarrow \text{LIV parameter}$

E -> energy

- → **Modification** of the **threshold** of the $\gamma\gamma$ → e^+e^- process
 - Hundreds-TeV photons interact with optical/UV photons
 - **Smaller** photon absorption

Results with LIV model

LIV effect

•	$P_{CP}(E, \gamma \rightarrow \gamma):$ @ 15 TeV $\rightarrow \sim 4 \times 10^{-4}$ @ 18 TeV $\rightarrow \sim 7 \times 10^{-7}$	•	@ 100 TeV → ~2 x 10 ⁻¹⁴⁵ @ 251 TeV → ~0
•	$P_{\text{LIV, }n=1}(E, \gamma \rightarrow \gamma):$ @ 15 TeV $\rightarrow \sim$ as in CP @ 18 TeV $\rightarrow \sim$ as in CP	•	@ 100 TeV → ~5 x 10 ⁻¹⁰ @ 251 TeV → ~ 0.68
•	$P_{\text{LIV, }n=2}(E, \gamma \rightarrow \gamma):$ @ 15 TeV $\rightarrow \sim$ as in CP @ 18 TeV $\rightarrow \sim$ as in CP	•	@ 100 TeV → ~2 x 10 ⁻⁶ @ 251 TeV → ~ 0.91

• LIV bounds (Lang+2019) • $E_{\text{LIV, }n=1} > 10^{20} \text{ GeV}$ • $E_{\text{LIV, }n=2} > 2 \times 10^{12} \text{ GeV}$

- We take $E_{\text{LIV, }n=1} = 3 \times 10^{20} \text{ GeV}$ $E_{\text{LIV, }n=2} = 5 \times 10^{12} \text{ GeV}$
- LIV-induced modifications sizable above ~40 TeV
 - cannot explain LHAASO event
 - effective to **explain Carpet-2** event (if real event not too far from $E \sim 251$ TeV)

Conclusions

Conclusions

- GRB 221009A challenges conventional physics (CP)
 - Event @ 18 TeV (LHAASO) → very problematic within CP
 - Event @ 251 TeV (Carpet-2) → unexplainable by CP

ALPs can explain both the detections

- Within current bounds about $g_{a\gamma\gamma}$ and m_a
- Same ALP parameters used in previous hints at ALPs
- LIV not satisfactory
 - Cannot explain LHAASO detection
 - Very effective to justify Carpet-2 event
- FINAL QUESTION: Possible first ALP indirect detection?

$$\begin{aligned} G_{\mu} = R_{\mu} - \frac{1}{2}R_{g\mu} = \frac{8\pi G}{c} T_{\mu}, \\ \Psi_{\mu}(\chi) = \frac{1}{4\epsilon} (A_{\mu}e^{i\mu} + A_{\mu}e^{i\mu}) \times \langle 0 \rangle \\ R_{\mu} = \frac{1}{2}R_{\mu} + A_{\mu}e^{i\mu} + A_{\mu}$$

$$\begin{aligned} G_{\mu} = R_{\mu} - \frac{1}{2}R_{g\mu} = \frac{8\pi G}{c} T_{\mu}, \\ \Psi_{\nu}(\mathbf{x}) = \frac{1}{4\kappa} (A_{\nu}e^{i\mathbf{x}} + A_{\nu}e^{i\mathbf{x}}) \times <0 \\ \kappa_{\nu} = \sqrt{2\pi} \frac{1}{4}R_{\mu} = \frac{8\pi G}{T^{2}} T_{\mu}, \\ H = \frac{P}{2m} P + \sqrt{n} \\ H = \frac{P}{2m} + \frac{P}{2m} \\ H = \frac{P}{2m} \\ H = \frac{P}{2m} + \frac{P}{2m} \\ H = \frac$$