VHE EMISSION IN GRBS: WHAT WE KNOW SO FAR

INAF Osservatorio Astronomico di Brera

8 MARCH 2023

Lara Nava

ASTRI-LHAASO

Gamma-Ray Bursts (GRB)

The general picture

Prompt emission

OBSERVATIONS

- keV-MeV
- Large variability (0.01 s)
- Short duration (0.1-1000 s)
- Non-thermal spectra

OPEN ISSUES

- Radiative mechanism
- Dissipation mechanism
- Nature of variability
- Properties at the emitting region

Gamma-Ray Bursts (GRB)

The general picture

Afterglow emission

OBSERVATIONS

- Longer duration
- smooth light-curves (PL decay)
- Soft X-ray to radio
- GeV

INTERPRETATION

 synchrotron, mostly from electrons at forward shock

LIMITATIONS

- Large degeneracies among model parameters:
 - Jet energy and Lorentz factor
 - Environment
 - particle acceleration

Observations at VHE (>0.1TeV)

RELEVANCE OF VHE OBSERVATIONS

- Prompt: understand nature of radiative mechanism
- Afterglow: place further constraints on model parameters
- EBL, IGMF, LIV, ALPs,...

STATUS

- GRBs have eluded Cherenkov telescopes for many years
- Until 2019 unclear if GRBs are VHE emitters
- Not robust predictions from theory
- Since 2019: five detections

A summary

Miceli D. & Nava L., 2022, Galaxies, 10, 66 *T*₉₀ IACT (sign.) $E_{\gamma,iso}$ Erange T_{delay} Ζ TeV S erg S 1.2×10^{49} 0.48 0.162 24 0.5-5 MAGIC (3.1σ) 160821B 6.0×10^{53} 0.654 3.64×10^4 H.E.S.S. (5.3σ) 180720B 48.9 0.1-0.44 2.5×10^{53} MAGIC (> 50σ) 362 0.424 190114C 57 0.3-1 2.0×10^{50} 1.55×10^{4} H.E.S.S. (21.7*σ*) 58.2 0.079 0.18-3.3 190829A 1.1×10^{50} MAGIC (3.5σ) 9.78 0.42 0.14 201015A 33 4.7×10^{53} 48 1.1 0.1 MAGIC (6.0 σ) 201216C 56

significance $< 5\sigma$

significance > 5σ —> I will focus on these GRBs

TeV detections by IACTs H.E.S.S. Detection of GRB 180720B

General properties

- Long GRB
- z = 0.65
- $E_{prompt} = 6 \times 10^{53} erg$

HESS detection

- ~10 hours after the GRB
- in the energy range
 0.1-0.44 TeV

See also modeling by Wang X.Y., Liu R.Y., Zhang H.M., 2019

MAGIC Detection of GRB 190114C

General properties

- Long GRB
- z = 0.42
- $E_{prompt} = 2.5 \times 10^{53} erg$

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range
 0.3-1 TeV

MAGIC collab. et al., Nature, 2019

MAGIC Detection of GRB 190114C

General properties

- Long GRB
- z = 0.42
- $E_{prompt} = 2.5 \times 10^{53} erg$

MAGIC detection

- 1-40 minutes after the GRB
- in the energy range
 0.3-1 TeV

MAGIC collab. et al., Nature, 2019 10^{-7} Flux [erg/cm²/s] 10⁻⁸+ 68-110 s 10^{-9 ,} **GBM** MAGI BAT XRT LAT -10 10 10 Flux [erg/cm²/s] 10⁻⁸ 110-180 s 10⁻⁹ • 10⁻¹⁰, 10⁹ 10¹² 10³ 10⁶ Energy [eV]

MAGIC Detection of GRB 190114C

MAGIC Detection of GRB 190114C

See also modeling by: Wang X.Y., et al., 2019 Asano K. et al., 2020 Josh et al., 2021 Derisive & Piran 2021

H.E.S.S. Detection of GRB 190829A

General properties 190829A .S. (200 GeV - 4.0 TeV) H.E.S. 10^{-8} ii-LAT (100 MeV - 1 GeV) Energy flux Ferm ≥1 ^{10−7} • Long GRB Energy flux (erg cm⁻² s⁻¹) Swift-BAT (15 keV - 50 keV) Swift-XRT (0.3 keV - 10 keV) • z = 0.079 10^{-9} 510 $\begin{array}{ccc} 40 & 60 & 80 & 100 \\ \text{Time since } T_0 \text{ trigger (s)} \end{array}$ • $E_{prompt} = 2 \times 10^{50} erg$ 10^{-10} 10-11 $\alpha_{\rm HESS} = 1.09 + / - 0.05$ $\alpha_{\rm XRT} = 1.07 + / - 0.09$ **HESS** detection 10-12 2.5 • ~4 hours to 3 days Photon index • in the energy range 2.0 0.2 - 3.3 TeV 1.5 10³ 10^{4} 10⁵ 106 Time since T₀ trigger (s)

H.E.S.S. Collab, 2019, Nature, 575, 464

H.E.S.S. Detection of GRB 190829A

See also Khangulyan D., Taylor A. M., Aharonian F., 2023

H.E.S.S. Detection of GRB 190829A

X-ray and TeV flux light curves

Miceli D. & Nava L., 2022, Galaxies, 10, 66

X-ray and TeV luminosity light curves

Miceli D. & Nava L., 2022, Galaxies, 10, 66

Amati correlation

Inferred values

Table 2. GRB 190114C: parameters inferred by different authors from the modeling of observations with a synchrotron-SSC scenario.

GRB 19011/C	$oldsymbol{E}_{oldsymbol{k}}$	ϵ_{e}	ϵ_B	n	p	$\mathbf{\xi}_{e}$
	erg			cm^{-3}		
MAGIC Coll.	≳3 ×10 ⁵³	0.05–0.15	$0.05 - 1 \times 10^{-3}$	0.5–5	2.4–2.6	1
Wang + 2019	$6 imes 10^{53}$	0.07	$4 imes 10^{-5}$	0.3	2.5	1
Asano + 2020	10^{54}	0.06	$9 imes 10^{-4}$	1	2.3	0.3
Asano + 2020	10^{54}	0.08	$1.2 imes 10^{-3}$	0.1 (wind)	2.35	0.3
Joshi + 2021	4×10^{54}	0.03	0.012	$2 imes 10^{-2}$ (wind)	2.2	1
Derishev + 2021	$3 imes 10^{53}$	0.1	2–6 $ imes 10^{-3}$	2	2.5	1

Table 3. Parameters for modeling of GRB 190829A.

GRR 190829A	E_k	ϵ_{e}	ϵ_B	n	p	ξ_e	$oldsymbol{ heta}_j$
	erg			cm^{-3}			rad
Hess Coll. (SSC)	$2.0 imes 10^{50}$	0.91	5.9–7.7 $ imes 10^{-2}$	1.	2.06–2.15	1.	1
Hess Coll. (Sync)	$2.0 imes 10^{50}$	0.03–0.08	≈1	1.	2.1	1.	/
Salafia + 2021	1.2–4.4 $ imes 10^{53}$	0.01-0.06	1.2–6.0 $ imes 10^{-5}$	0.12-0.58	2.01	$<6.5 \times 10^{-2}$	0.25–0.29
Zhang + 2021	$9.8 imes10^{51}$	0.39	8.7×10^{-5}	0.09	2.1	0.34	0.1

Miceli D. & Nava L., 2022, Galaxies, 10, 66

WHAT HAVE WE LEARNED?

- Energy emitted at VHE can be similar to energy emitted at lower frequencies
- VHE emission can be produced by both energetics and under energetics GRBs
- VHE emission can last for days
- SSC is a viable explanation

OPEN QUESTIONS

- Origin of >100 GeV emission is still debated (LAT observations are fundamental)
- do short GRBs also have conditions to produce a detectable VHE flux?
- VHE emission during the prompt?

CTA - Cherenkov Telescope Array

Consortium paper on prospects for CTA observations of GRB in preparation

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

Vercellone et al., JHEAp, 35, 1 (2022) ASTRI Mini-Array core science at the Observatorio del Teide

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

Vercellone et al., JHEAp, 35, 1 (2022) ASTRI Mini-Array core science at the Observatorio del Teide

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

Vercellone et al., JHEAp, 35, 1 (2022) ASTRI Mini-Array core science at the Observatorio del Teide

THANK YOU FOR YOUR ATTENTION

Lara Nava

INAF Osservatorio Astronomico di Brera

Lara Nava

ASTRI-LHAASO