Bird's eye view of LHAASO, 2021-08

- Location: 29°21'27.6" N, 100°08'19.6" E
- Altitude: 4410 m
- 2021-07 completed built and in operation

Status of LHAASO Experiment

Zhen Cao on behalf of LHAASO Coll.

ASTRI-LHAASO Joint Workshop, on-line, March 7-8, 2023

LHAASO

20"

LHAASO-WCDA 高海拔宇宙残观测站 Water Cherenkov **Detector** Array X[m] Area: 300 **78,000 m² Detector units:** ۲ 3120 **Energy Range:** 0.1-10 TeV

50000

25000 12000

6000 3000 1500

800

400

200 Е

100

σ

50

25 12

5.5 2.5

1.5

0.8 0.4

0.2

.

.

•

.

٠

٠

.

150

On-site Computing

高海拔宇宙溪観测站

4410

- Full functional computing room
- # of CPU Cores: ~10,000
- Temp Storage:
 2.5 PByte
- Data Band Width:
 2.4 Gbit/sec

Super Stable & Fruitful Operation

Very wide FoV, Continuously monitoring

- FoV: ~1/6 of entire sky at any moment, good for very extended structures
- Transient phenomena, e.g. GRB221009A

Northern sky

any moment

THAASO THAASO THAASO THAASO THAASO CR Background rejection in WCDA

CR background Rejection by KM2A

- Counting number of measured muons in a shower
- Cutting on ratio $N_{\mu}/N_{e} < 1/230$
- BG-free $(N_{\gamma} > 10N_{CR})$ Photon Counting for showers with E>100 TeV from the **Crab**

GRB221009A and Crab as calibration targets

The burst of 64k photons in 270 seconds
 versus the exposure of the Crab for 508 days

Pointing accuracy: 0.02°

The coverage of 3.5 orders of magnitudes of energy

Performances

- Arrival direction: resolution of 0.26° @100 TeV
- Shower core location: resolution of 3 m @100 TeV
 - Zenith angle effect

y-ray Energy and the Resolution

δE/E~14%
 (E>100 TeV)

拔宇宙线观测站

Den

- Linear response
- Lateral distribution

 ρ_{50}

Distance from shower axis(m)

Discovery in KM2A Survey Our Galaxy is full of PeVatrons

Table 1 | UHE γ-ray sources

Source name	RA (°)	dec. (°)	Significance above 100 TeV (×σ)	E _{max} (PeV)	Flux at 100 TeV (CU)	
LHAASO J0534+2202 83.55		22.05	17.8	0.88 ± 0.11	1.00(0.14)	
LHAASO J1825-1326	276.45	-13.45	16.4	0.42 ± 0.16	3.57(0.52)	
LHAASO J1839-0545	279.95	-5.75	7.7	0.21±0.05	0.70(0.18)	
LHAASO J1843-0338	280.75	-3.65	8.5	0.26 - 0.10+0.16	0.73(0.17)	
LHAASO J1849-0003	282.35	-0.05	10.4	0.35 ± 0.07		
LHAASO J1908+0621	287.05	6.35	17.2	0.44 ± 0.05	1.36(0.18)	
LHAASO J1929+1745	292.25	17.75	7.4	0.71-0.07 ^{+0.16}	0.38(0.09)	
LHAASO J1956+2845	299.05	28.75	7.4	0.42 ± 0.03	0.41(0.09)	
LHAASO J2018+3651	304.75	36.85	10.4	0.27 ± 0.02	0.50(0.10)	
LHAASO J2032+4102	308.05	41.05	10.5	1.42 ± 0.13	0.54(0.10)	
LHAASO J2108+5157	317.15	51.95	8.3	0.43 ± 0.05	0.38(0.09)	
LHAASO J2226+6057	336.75	60.95	13.6	0.57 ± 0.19	1.05(0.16)	

12 PeVatrons are discovered

• High Standard: significance > 7σ

◆BG-free: Cosmic Ray background

rejection rate <10⁻⁴ High Statistics: 530 UHE photons many more now

Special attention to PeV Photons: 1.1 PeV

LHAASO, Science, 373, 425-430, 2021

HE Record from Cygnus Direction at 1.4 PeV, renewed by > 2 PeV

More than 10 photons above 1 PeV have been recorded.

everyone is well studied by simulating large number of events around them and analyzing for chance probability

LHAASO Catalog Ver-0 (potential counterparts)

Extended Data Table 2 | List of energetic astrophysical objects possibly associated with each LHAASO source

LHAASO Source	Possible Origin	Туре	Distance (kpc)	Age $(kyr)^a$	$L_s (\text{erg/s})^b$	Potential TeV Counterpart ^c
LHAASO J0534+2202	PSR J0534+2200	PSR	2.0	1.26	4.5×10^{38}	Crab, Crab Nebula
LHAASO J1825-1326	PSR J1826-1334	PSR	3.1 ± 0.2^d	21.4	2.8×10^{36}	HESS J1825-137, HESS J1826-130,
	PSR J1826-1256	PSR	1.6	14.4	$3.6 imes 10^{36}$	2HWC J1825-134
LHAASO J1839-0545	PSR J1837-0604	PSR	4.8	33.8	2.0×10^{36}	2HWC J1837-065, HESS J1837-069,
	PSR J1838-0537	PSR	1.3^e	4.9	$6.0 imes 10^{36}$	HESS J1841-055
LHAASO J1843-0338	SNR G28.6-0.1	SNR	9.6 ± 0.3^{f}	$< 2^{f}$		HESS J1843-033, HESS J1844-030,
						2HWC J1844-032
LHAASO J1849-0003	PSR J1849-0001	PSR	7^g	43.1	9.8×10^{36}	HESS J1849-000, 2HWC J1849+001
	W43	YMC	5.5^h	—	_	
LHAASO J1908+0621	SNR G40.5-0.5	SNR	3.4^i	$\sim 10 - 20^j$	_	MGRO J1908+06, HESS J1908+063,
	PSR 1907+0602	PSR	2.4	19.5	2.8×10^{36}	ARGO J1907+0627, VER J1907+062,
	PSR 1907+0631	PSR	3.4	11.3	$5.3 imes 10^{35}$	2HWC 1908+063
LHAASO J1929+1745	PSR J1928+1746	PSR	4.6	82.6	$1.6 imes 10^{36}$	2HWC J1928+177, 2HWC J1930+188,
	PSR J1930+1852	PSR	6.2	2.9	$1.2 imes 10^{37}$	HESS J1930+188, VER J1930+188
	SNR G54.1+0.3	SNR	$6.3^{+0.8}_{-0.7}$ d	$1.8 - 3.3^k$	_	
LHAASO J1956+2845	PSR J1958+2846	PSR	2.0	21.7	3.4×10^{35}	2HWC J1955+285
	SNR G66.0-0.0	SNR	2.3 ± 0.2^d	—	_	
LHAASO J2018+3651	PSR J2021+3651	PSR	$1.8^{+1.7}_{-1.4}$ l	17.2	3.4×10^{36}	MGRO J2019+37, VER J2019+368,
	Sh 2-104	H II/YMC	$3.3\pm 0.3^m/\! 4.0\pm 0.5^n$	_	_	VER J2016+371
LHAASO J2032+4102	Cygnus OB2	YMC	1.40 ± 0.08^o			TeV J2032+4130, ARGO J2031+4157,
	PSR 2032+4127	PSR	1.40 ± 0.08^o	201	$1.5 imes 10^{35}$	MGRO J2031+41, 2HWC J2031+415,
	SNR G79.8+1.2	SNR candidate	—	—	_	VER J2032+414
LHAASO J2108+5157	_					—
LHAASO J2226+6057	SNR G106.3+2.7	SNR	0.8^p	$\sim 10^p$		VER J2227+608, Boomerang Nebula
	PSR J2229+6114	PSR	0.8^p	$\sim 10^p$	$2.2 imes 10^{37}$	

Discovery of New Sources

LHAASO Catalog Ver-1

SED of the Crab: "standard Candle"& PeVatron

LHAASO Coll., *Science*, 373, 425 (2021)

LHAASO:

- Covering 3.5 decades of energy
- > Agreeing with other experiments below 100 TeV
- Self cross-checking between WCDA & KM2A
- & LHAASO-KM2A:
- > Unique UHE SED
- > A PeVatron without ambiguity
- Clear origin: a well-known PWN

Discovery Using KM2A Onset of UHE γ-ray Astronomy

E > 0.1 PeV

- VHE γ-ray astronomic major instrument:
 Sensitive below 0.1 PeV
- LHAASO: provide a statistically significant coverage of the energy range above 0.1 PeV
- ♦ Spectroscopy: 15% resolution
- ♦ Morphology: 0.3° PSF
- ♦ Multi-messenger Astronomy: UHE band

Prospects

Cyg OB2

Mrk421

Cygnus region: cosmic ray origin

Extra galactic sources

• Diffuse γ -ray emission

New physics frontier exploring: LIV, DM...

Exploring Lorentz Invariance Violation

拔宇宙线观测站

New CLs method

LHAASO Coll. PRL in press, arXiv:2106.12350

Conclusion

- LHAASO is a survey facility for UHE sources in northern sky
- Fully operation started July 2021 with a rate ~1 B events per day
- Strong separation power between γ-rays and CR background
- Photon arrival direction and energy measurements are calibrated using standard candle
- Number of PeVatrons in our galaxy is updating soon
- A couple of Pevatrons are analyzed in depth: the Crab and more
- Section 2018 Se

Few words about the synergy between techniques

Synergy between EAS and IACT

 3rd Generation of the survey device reaches the sensitivity of 10⁻¹⁴ TeV/cm²/s, i.e. 12 mCU

拔宇宙残观测站

 Precise measurements for SEDs

