GRBS AT VHE: WHAT HAVE WE LEARNED SO FAR

INAF

Osservatorio Astronomico di Brera

TEV DETECTIONS BY IACTS

A summary

	T_{90} $E_{\gamma,is}$ s erg		Z	T _{delay} s	E _{range} TeV	IACT (sign.)	
180720B	48.9	$6.0 imes 10^{53}$	0.654	3.64×10^{4}	0.1-0.44	H.E.S.S. (5.3 <i>σ</i>)	
190114C	362	$2.5 imes 10^{53}$	0.424	57	0.3-1	MAGIC (> 50σ)	
190829A	58.2	$2.0 imes10^{50}$	0.079	1.55×10^{4}	0.18-3.3	H.E.S.S. (21.7 <i>σ</i>)	
201015A	9.78	$1.1 imes10^{50}$	0.42	33	0.14	MAGIC (3.5σ)	
201216C	48	$4.7 imes 10^{53}$	1.1	56	0.1	MAGIC (6.0 σ)	
221009A	600	3 x 10 ⁵⁴	0.15	0	0.5-18	LHAASO	

MAGIC GRB 190114C

Lightcurve

MAGIC GRB 190114C

SED modeling: double peak

H.E.S.S. GRB 180720B

Lightcurve

H.E.S.S. GRB 190829A

Lightcurve

• Long GRB

• z = 0.079

HESS detection

0.2 - 3.3 TeV

H.E.S.S. GRB 190829A

Spectra

H.E.S.S. Collab, 2021, Science, 372, 6546

LHAASO GRB 221009A

An intrinsically luminous GRB at z = 0.15

PROMPT

- GBM saturated
- LAT pile-up
- $E_{iso} \sim 10^{54} 10^{55} \text{ erg}$
- $L_{iso} \sim 10^{53} \text{ erg/s}$
- Duration ~ 600 s (long GRB)

Large energetics + low redshift

—> very rare event!

GRB 221009A

LHAASO in the first 2000 s >5000 photons above 0.5 TeV, max photon energy 18 TeV

GRB 221009A

LHAASO in the first 2000 s >5000 photons above 0.5 TeV, max photon energy 18 TeV

• Even not particularly bright GRBs produce TeV radiation

WHAT HAVE WE LEARNED

MODEL - INDEPENDENT CONSIDERATIONS

• Even not particularly bright GRBs produce TeV radiation

- Even not particularly bright GRBs produce TeV radiation
- TeV emission is associated to afterglow radiation
- TeV emission can last days

- Even not particularly bright GRBs produce TeV radiation
- TeV emission is associated to afterglow radiation
- TeV emission can last days
- TeV emission can extend to energies > 10 TeV

- Even not particularly bright GRBs produce TeV radiation
- TeV emission is associated to afterglow radiation
- TeV emission can last days
- TeV emission can extend to energies > 10 TeV

- Even not particularly bright GRBs produce TeV radiation
- TeV emission is associated to afterglow radiation
- TeV emission can last days
- TeV emission can extend to energies > 10 TeV
- Concrete possibility to use GRBs for fundamental physics and EBL studies

See talk by Giorgio Galanti Wednesday 12:05

- Even not particularly bright GRBs produce TeV radiation
- TeV emission is associated to afterglow radiation
- TeV emission can last days
- TeV emission can extend to energies > 10 TeV
- Concrete possibility to use GRBs for fundamental physics and EBL studies
- Energy in TeV similar to energy in X-ray —> doubles the energy released in the afterglow phase

MODEL - DEPENDENT IMPLICATIONS

- In external shocks there are conditions for SSC. This implies an equipartition value for B lower then usually assumed (10⁻⁴ instead of 10⁻²-10⁻¹)
- SSC peak flux similar to synchrotron peak flux —> Compton param ~1 —> affects the location of the synchrotron cooling frequency
- Parameter space reduced —> degeneracy among parameters reduced

Table 2. GRB 190114C: parameters inferred by different authors from the modeling of observations with a synchrotron-SSC scenario.

GRB 10011/C	$oldsymbol{E}_{oldsymbol{k}}$	ϵ_e	ϵ_B	n	p	$\boldsymbol{\xi}_{e}$
UND 170114C	erg			cm^{-3}		
MAGIC Coll.	≳3 ×10 ⁵³	0.05–0.15	$0.05 - 1 \times 10^{-3}$	0.5–5	2.4–2.6	1
Wang + 2019	$6 imes 10^{53}$	0.07	$4 imes 10^{-5}$	0.3	2.5	1
Asano + 2020	10^{54}	0.06	$9 imes 10^{-4}$	1	2.3	0.3
Asano + 2020	10^{54}	0.08	$1.2 imes 10^{-3}$	0.1 (wind)	2.35	0.3
Joshi + 2021	4×10^{54}	0.03	0.012	$2 imes 10^{-2}$ (wind)	2.2	1
Derishev + 2021	$3 imes 10^{53}$	0.1	2–6 $ imes 10^{-3}$	2	2.5	1
Table 3. Parameters for modeling of	GRB 190829A.					

GRR 190829	$\Delta = E_k$	ϵ_e	ϵ_B	n	p	ξe	$oldsymbol{ heta}_j$
	erg			${ m cm}^{-3}$			rad
Hess Coll. (SSC)	$2.0 imes10^{50}$	0.91	5.9–7.7 $ imes 10^{-2}$	1.	2.06–2.15	1.	/
Hess Coll. (Sync)	$2.0 imes 10^{50}$	0.03-0.08	≈1	1.	2.1	1.	/
Salafia + 2021	1.2–4.4 $ imes 10^{53}$	0.01-0.06	1.2–6.0 $ imes 10^{-5}$	0.12–0.58	2.01	$<6.5 \times 10^{-2}$	0.25–0.29
Zhang + 2021	9.8×10^{51}	0.39	8.7×10^{-5}	0.09	2.1	0.34	0.1

Miceli D. & Nava L., 2022, Galaxies, 10, 66

OPEN QUESTIONS & FUTURE CHALLENGES

- Which conditions are required to produce VHE component?
- How common are these conditions?
- VHE emission in short GRBs: understand differences short/long (environment, jet,...)
- VHE observations during the prompt: unique tool to understand the origin of prompt radiation (see LHAASO detection)

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

The ASTRI-Mini Array

SIMULATIONS

- 190114C as a template
- moved at 3 different z:
 - -z = 0.42 (original z)
 - z = 0.25
 - **z = 0.078** (same as HESS GRB 190829A)

THANK YOU FOR YOUR ATTENTION

X-ray and TeV luminosity light curves

Adapted from Miceli D. & Nava L., 2022, Galaxies, 10, 66

X-ray and TeV flux light curves

Adapted from Miceli D. & Nava L., 2022, Galaxies, 10, 66

VHE photons coming from cosmological distances are attenuated by pair production with EBL photons

$$\gamma \gamma_{EBL} \rightarrow e^+ e^-$$

Amount of attenuation depends on photon energy and redshift

TeV detections by IACTs

H.E.S.S. Detection of GRB 190829A

See also Khangulyan D., Taylor A. M., Aharonian F., 2023

TeV detections by IACTs

H.E.S.S. Detection of GRB 190829A

GRB 190829A: MODELING MW LIGHTCURVES

MODELING WITH TWO COMPONENTS

MODELING WITH TWO COMPONENTS

Amati correlation

Miceli D. & Nava L., 2022, Galaxies, 10, 66

MODELING WITH TWO COMPONENTS

EVIDENCE FOR HIGH-ENERGY ADDITIONAL SPECTRAL COMPONENTS FROM GEV OBSERVATIONS

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

V CONGRESSO NAZIONALE GRB

EVIDENCE FOR HIGH-ENERGY ADDITIONAL SPECTRAL COMPONENTS FROM GEV OBSERVATIONS

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

EVIDENCE FOR HIGH-ENERGY ADDITIONAL SPECTRAL COMPONENTS FROM GEV OBSERVATIONS

Afterglow emission

- Extra-component in spectra?? (no clear evidence)
- Photons with E>Emax,syn: revision of afterglow shock physics required (Kouveliotou et al 2013)? B-field decay (e.g., Kumar et al., 2012)?

GRB 221009A

An intrinsically luminous GRB at z = 0.15

AFTERGLOW

• XRT, optical, radio, LAT (~3600-6600s, photon index = -2.12)

OTHER OBSERVATIONS

- LHAASO in the first 2000 s >5000 photons above 0.5 TeV, max photon energy 18 TeV
- Carpet-2: 250 TeV-photon like air shower
- HAWC observations started 8 hours after T_0 , no detection
- IceCUBE: zero track-like muon neutrinos from T_0 -1 hour to T_0 +2 hours
- KM3NeT: zero track-like muon neutrinos from T_0 -50s to T_0 +5000s

GRB 221009A

An intrinsically luminous GRB at z = 0.15

AFTERGLOW

• XRT, optical, radio, LAT (~3600-6600s, photon index = -2.12)

OTHER OBSERVATIONS

- LHAASO in the first 2000 s >5000 photons above 0.5 TeV, max photon energy 18 TeV
- Carpet-2: 250 TeV-photon like air shower
- HAWC observations started 8 hours after T₀, no detection
- IceCUBE: zero track-like muon neutrinos from T_0 -1 hour to T_0 +2 hours
- KM3NeT: zero track-like muon neutrinos from T_0 -50s to T_0 +5000s