The Galactic center at very high energy

European Research Council

Gabriele Ponti INAF OA Brera - MPE

The Galactic center is a peculiar environment

The Galactic center is a peculiar environment

Interesting to study!

Non-thermal filaments tracing B?

Non-thermal filaments tracing B?

Sgr/A*

Non-thermal filaments tracing B? What is the magnetic field strength? 0.01 mG? 0.1 mG? 1mG?

Sgr/A*

Non-thermal filaments tracing B? What is the magnetic field strength? 0.01 mG? 0.1 mG? 1mG?

What is the magnetic field configuration? Vertical? Poloidal? Toroidal? How quickly do cosmic rays escape?

SgrA*

The central degrees of the Milky Way

Galactic longitude

The central degrees of the Milky Way

Central Molecular Zone Herschel column density map

140 pc

1 deg

Sgr A*

359.600

359.400

Molinari+11

Abundant gas reservoir ~3×10⁷ M_{Sun} Peculiar environment: forming stars at extremely low rate (10 times lower than expected)

359.800

Nevertheless -> Mini starburst

0.000

Galactic longitude

The H.E.S.S. view of Galactic center

The H.E.S.S. view of Galactic center

Cosmic rays interacting with clouds

 \cap

3EG J1744-3011

The H.E.S.S. view of Galactic center

Grey scale flux range= 50.0 800.0

Reflection of a past bright flash

Fe K α flux [ph cm⁻² s⁻¹ pixel⁻¹]

Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b; +19; Marin+14; Koyama+14;+18;+21; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19;+22; Di Gesu+20; Khabibullin+20a,b,22 Tanaka+21; Ferrazzoli+21

3.5e-08

See also

Reflection of a past bright flash

1.5e-08

All Fe K α bright regions are variable \rightarrow Reflection by bright flash in the center

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b; +19; Marin+14; Koyama+14;+18;+21; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19;+22; Di Gesu+20; Khabibullin+20a,b,22 Tanaka+21; Ferrazzoli+21

2.5e-08

3.5e-08

Fe K α flux [ph cm⁻² s⁻¹ pixel⁻¹]

Reflection of a past bright flash

See also Ponti+10;+13;+14; Clavel+13;+14; Yusef-Zadeh+13a,b; +19; Marin+14; Koyama+14;+18;+21; Zhang+15; Mori+15; Nobukawa+15; +16; Walls+16; Krivonos+14;+17; Churazov+17a,b,c; Chuard+18; Chernyshov+18; Kuznetsova+19;+22; Di Gesu+20; Khabibullin+20a,b,22 Tanaka+21; Ferrazzoli+21

2.5e-08

3.5e-08

Fe K α flux [ph cm⁻² s⁻¹ pixel⁻¹]

All Fe K α bright regions are variable \rightarrow Reflection by bright flash in the center

Si xiii, S xv, Ar xvii

140 pc

1 deg

Ponti +15

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region

140 pc

1 deg

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - S	SUPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26 imes 20	X-R 48,51,75,76,
G359.07-0.02	G359.0-0.0	359.07,-0.02	22 imes 10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24 imes16	X 66
G359.10-0.5		359.10,-0.51	22 imes 22	X-R 37,48,51,56,74,
G359.41-0.12		359.41,-0.12	3.5 imes 5.0	X 14
Chimney		359.46,+0.04	6.8 imes 2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20 imes 16	X 15,16,17
	G359.79-026b	359.79,-0.26	8 imes 5.2	X 15,16,17
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,34
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,
Sgr A East	G0.0+0.0	359.963, -0.053	3.2 imes2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3 imes 4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,
	G0.34+0.05 G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.519,-0.046\$	2.4 imes 5.1	This wo
G0.57-0.001		0.57,-0.001	1.5 imes2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65,
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29,
DS1	G1.2-0.0	1.17,+0.00	3.4 imes 6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,75
	G1.05-0.15	-	_	
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.40.10	10×10	R 73.81.

Ponti +15

R 73,81,82

work 51,81,82

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - SU	UPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26 imes 20	X-R 48,51,75,76
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24 imes16	X 66
G359.10-0.5		359.10,-0.51	22 imes 22	X-R 37,48,51,56,74
G359.41-0.12		359.41,-0.12	3.5 imes 5.0	X 14
Chimney		359.46,+0.04	6.8 imes2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20 imes 16	X 15,16,1
	G359.79-026þ	359.79,-0.26	8 imes 5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,3
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47
Sgr A East	G0.0+0.0	359.963, -0.053	3.2 imes2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3 imes 4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14 imes 8.8	R 21,48,51
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7 imes 7.4	X 22
G0.52-0.046		0.519,-0.046\$	2.4 imes 5.1	This wo
G0.57-0.001		0.57,-0.001	1.5 imes2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29
DS1	G1.2-0.0	1.17,+0.00	3.4 imes 6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10 imes 8.0	R 30,31,48,51,7
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.40.10	10×10	R 73.81

ATLAS OF DIFFUSE X-DAV EMITTING FEATURES

Ponti +15

R 73,81,82

work 51,81,82

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$ Massive kinetic energy input > 1.1×10⁴⁰ erg s⁻¹

140 pc

1 deg

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - S	UPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26 imes 20	X-R 48,51,75,76,
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24 imes16	X 66
G359.10-0.5		359.10,-0.51	22 imes 22	X-R 37,48,51,56,74
G359.41-0.12		359.41,-0.12	3.5 imes 5.0	X 14
Chimney		359.46,+0.04	6.8 imes2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20 imes 16	X 15,16,1
	G359.79-026þ	359.79,-0.26	8 imes 5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,3
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47
Sgr A East	G0.0+0.0	359.963, -0.053	3.2 imes2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3 imes 4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14 imes 8.8	R 21,48,51
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7 imes 7.4	X 22
G0.52-0.046		0.519,-0.046\$	2.4 imes 5.1	This wo
G0.57-0.001		0.57,-0.001	1.5 imes2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29
DS1	G1.2-0.0	1.17,+0.00	3.4 imes 6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,7
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.4,-0.10	10×10	R 73.81

Ponti +15

G1.4-0.1

1.4,-0.10

R 73,81,82

work 51,81,82

Si xiii, S xv, Ar xvii

Atlas of all (~15) SNR in the region $3.5 \times 10^{-4} \text{ yr}^{-1} < \text{SN rate} < 15 \times 10^{-4} \text{ yr}^{-1}$ Massive kinetic energy input > 1.1×10⁴⁰ erg s⁻¹

→ Powering outflows to Galactic center lobe?

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

140 pc

1 deg

Ponti +15

Name	Other name	Coordinates (1, b)	Size arcsec	Reference
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117
Quintuplet		0.1604, -0.0591	0.5	1,63,1
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,6
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,1
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,1
SNR - BUBBLES - SI	UPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26 imes 20	X-R 48,51,75,76
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,5
	G359.12-0.05	359.12,-0.05	24 imes16	X 66
G359.10-0.5		359.10,-0.51	22 imes 22	X-R 37,48,51,56,74
G359.41-0.12		359.41,-0.12	3.5 imes 5.0	X 14
Chimney		359.46,+0.04	6.8 imes2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20 imes 16	X 15,16,1
	G359.79-026þ	359.79,-0.26	8 imes 5.2	X 15,16,1
	G0.0-0.16††	0.00,-0.16		X This w
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,3
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47
Sgr A East	G0.0+0.0	359.963, -0.053	3.2 imes2.5	X-R 5,18,19,20
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This w
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3 imes 4.6	X This w
G0.30+0.04	G0.3+0.0	0.34,+0.045	14 imes 8.8	R 21,48,51
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.519,-0.046\$	2.4 imes 5.1	This wo
G0.57-0.001		0.57,-0.001	1.5 imes2.9	This wo
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,5
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2 imes 4.8	X 22,65
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6 imes7.2	R 25,26,27,28,29
DS1	G1.2-0.0	1.17,+0.00	3.4 imes 6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10 imes 8.0	R 30,31,48,51,7
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.40.10	10×10	R 73.81

ATT AS OF DIFFUSE V DAV EMITTING FEATUDES

Ponti +15

G1.4-0.1

1.4,-0.10

R 73,81,82

work 1,81,82

Galactic longitude

Galactic longitude

Latitudinal distance in pc from Sgr A*

Galactic longitude

Latitudinal distance in pc from Sgr A*

Discovery of the FERMI bubbles

FERMI Hardness E>2 GeV / E<2 GeV

Su+10; Kataoka +18

Orbital motion around BH!

t=0 min ⊃_{pol} = 46±6 min -0.5 -1.0 -1.5 0.5 0 $Q/\sqrt{(Q^2+U^2)}$

61

Orbital motion around BH!

The Galactic center is a peculiar environment

The Galactic center is a peculiar environment → but similar to the center of many galaxies

GC as center of most galaxies

JWST - PHANGS collaboration

GC as center of most galaxies

JWST - PHANGS collaboration

Central molecular zone

GC as center of most galaxies

JWST - PHANGS collaboration

Central molecular zone

Peculiar environment expected in all barred galaxies

The Milky Way

Galactic bar mass Mass ~ 7×10⁹ Msun Size ~ 3 kpc

6ذ

90°

75,000 ly

60,000

45,000,1

Arm

Security

Penseus Arm

Outer Arm

120°

SCUL

Norma

0

Laurus

Arm

From Spitzer/GLIMPSE data Churchwell +09

🔘 Sun

Orion Spur

15,000 ly

30,000 ly

What would I love to do with CTA?
→ Localisation of GC TeV source

→ Localisation of GC TeV source

Sgr A*? PWN? Star cluster? Other?

What would I love to do with CTA? → Nature of GC PeVatron

What would I love to do with CTA? → Nature of GC PeVatron

What would I love to do with CTA? → Nature of GC PeVatron

Sgr A*? Young star clusters? Other?

H.E.S.S. Collab. +16

Galactic longitude (degrees)

What would for to do with CTA? → Nature of GC PeVatron

00.0 Galactic longitude (degrees)

What would **| love to do with CTA?** → Nature of GC PeVatron

Young star clusters

Super bubble

00.0 Galactic longitude (degrees)

What would I love to do with CTA?

Cover the base and edges of the Galactic outflow!

What would I love to d

Cover the base and edges of the Galactic outflow!

ESA News/XMM-Newton/G. Ponti 2019, Nature

Galactic longitude

What would I love to (

Cover the base and edges of the Galactic outflow!

latitud Galactic

Galactic longitude

What would I love to

→ Cover the base and edges of the Galactic outflow!

Galactic latitud

Ponti +21

Also non-thermal component!

<mark>XMM: 1.5-2.6 keV</mark> WISE: 22.2/12.08 μm MeerKAT: 1.284 GHz

Galactic longitude

What would I love to

Cover the base and edges of the Galactic outflow!

Salactic latitu

Ponti +21

Also non-thermal component!

Su+10; Kataoka +18

Galactic longitude

XMM: 1.5-2.6 keV WISE: 22.2/12.08 μm MeerKAT: 1.284 GHz

→ Sgr A*'s emission during flares

Most recent multi-wavelength flare of Sgr A*

 $|\mathsf{O}|$ 0.05 Flux (Ph/s)

γe~5×10⁴

Most recent multi-wavelength flare of Sgr A*

Most recent multi-wavelength flare of Sgr A*

What would I love to do with CTA? → Use molecular clouds as calorimeters for cosmic rays

What would I love to do with CTA? → Use molecular clouds as calorimeters for cosmic rays

What would I love to do with CTA? → Check TeV emission from filaments and B configuration Fast escape of cosmic rays?

What would I love to do with CTA?

Study peculiar GC sources

What would I love to do with CTA?

→ Study peculiar GC sources

What would I love to

→ Study peculiar GC sources

359.700

Ponti+ in prep

Ponti+ in prep

Scan of the plane with XMM and Chandra

Ponti+ in prep

Scan of the plane with XMM and Chandra

HESS Galactic plane survey HGPS flux > 1 TeV (% Crab)

Conclusions

Conclusions Plenty of outstanding science can be done with CTA observations of the Galactic center!

Conclusions Plenty of outstanding science can be done with CTA observations of the Galactic center! And we are getting ready...

Conclusions Plenty of outstanding science can be done with CTA observations of the Galactic center! And we are getting ready...

KM2A (E > 25 TeV) Significance Map

Conclusions Plenty of outstanding science can be done with CTA observations of the Galactic center! And we are getting ready...

KM2A (*E* > 25 TeV) Significance Map

LHAASO -> outstanding!

But can not observe the GC

First NIR and X-ray spectrum of a flare

10⁶

First NIR and X-ray spectrum of a flare **10⁶** S⁻¹ vL(v) (10³⁰ erg **10**⁵ SINFONI **10**⁴ **10³ 10**¹⁴ **10**¹⁵

