Galactic PeVatron candidates in the LHAASO J1956+2845 sky region

MICHELA RIGOSELLI¹

Andrea Giuliani¹, Silvia Crestan¹, Fabio Pintore², Sandro Mereghetti¹, Nicola La Palombara¹, Lara Sidoli¹

> 1 INAF, IASF Milano 2 INAF, IASF Palermo

29/05/2023 – Roma

Science with the Cherenkov Telescope Array, 2017 Cao+ 2023, TODAY

Science with the Cherenkov Telescope Array, 2017 Cao+ 2023, TODAY

10-year GPS sensitivity

LHAASO J1956+2845 sky region

1 – 100 TeV 1 px = 0.10 deg

> Abeysekara+ 2018, ApJ 866, 24 Albert+ 2020, ApJ 905, 76 Cao+ 2021, Nature 594, 33

3HWC J1954+286

PSR J1954+2836:

- $\dot{E} = 1.0 \times 10^{36}$ erg/s, $\tau = 70$ kyr, $d \approx 2$ kpc (pseudo-distance)
- γ -ray pulsar ($F_{0.1-100 \text{ GeV}} = 1.07(3) \times 10^{-10} \text{ erg/cm}^2/\text{s}$), no PWN
- X-ray yet to be observed

SNR G65.1+0.6:

- $\tau \approx 40 150 \text{ kyr}$
- $d \approx 4 9$ kpc (opt. extinction or HI abs.)
- Radio shell-structure
- γ-ray emission in PS1 and PS2 (green), coincident with VERITAS (white contours)

Radio image, TeV contours

Tian+ 2006, A&A 455, 1053 Gao+ 2011, A&A 529, A159 Xing+ 2022, ApJ 930, 164 4FGL-DR3

3HWC J1957+291

PSR J1958+2846:

- $\dot{E} = 3.4 \times 10^{35}$ erg/s, $\tau = 22$ kyr, $d \approx 2$ kpc (pseudo-distance)
- γ -ray pulsar ($F_{0.1-100 \text{ GeV}} = 1.06(3) \times 10^{-10} \text{ erg/cm}^2/\text{s}$), no PWN
- X-ray ($F_{1-10 \text{ keV}} = 1.7(5) \times 10^{-14} \text{ erg/cm}^2/\text{s}$)

SNR G66.0-0.0:

- $\tau = ?, d \approx 2 4$ kpc (optical extinction)
- Optical filaments (black), Hα survey
- Radio only at 6 cm (yellow contours)

Hα image, radio contours

Gregory+ 1996, ApJS 103, 427 Sabin+ 2013, MNRAS 413, 279 4FGL-DR3

3HWC J1954+286

- *B* = 13 µG
- *W*_e = 2×10⁴⁶ erg
- ECPL with Γ = 2.3 and E_c = 15 TeV

- *B* = 11 µG
- $W_{\rm p} = 2 \times 10^{48} \, {\rm erg}$
- ECPL with Γ = 1.8 and E_c = 150 TeV

3HWC J1957+291

- *B* = 8 µG
- $W_{\rm e} = 6 \times 10^{45} \, {\rm erg}$
- ECPL with Γ = 2.4 and E_c = 90 TeV

- *B* = 8 µG
- $W_{\rm p} = 10^{48} \, {\rm erg}$
- ECPL with Γ = 1.7 and E_c = 117 TeV

3HWC J1954+286 / J1957+291

What CTA can do:

- Confirm the HAWC/MILAGRO detections
- Detect the sources below 1 TeV
- Identify the source(s) of LHAASO J1956+2845:

1) SNR

Both SNRs are middle-aged, interaction with molecular clouds is needed. No compelling evidence of MC in the position of LHAASO (magenta) HAWC (green) sources

Still missing: G66.0-0.0 needs to be better constrained at radio wavelenght, while G65.1+0.6 should be better investigate at ~1 GeV

CO Survey image, TeV/PeV contours

3HWC J1954+286 / J1957+291

What CTA can do:

- Confirm the HAWC/MILAGRO detections
- Detect the sources below 1 TeV
- Identify the source(s) of LHAASO J1956+2845:

2) PWN

 $R \leq 5 \text{ pc } d_{2 \text{ kpc}}$

According to this relation, both pulsars must be really efficient to accelerate electrons up to ~1 PeV

Still missing: Uncostraining upper limits on 0.1–10 keV and 0.1–100 GeV PWNe

de Oña Wilhelmi+ 2022, ApJL 930, L2

3HWC J1954+286 / J1957+291

What CTA can do:

- Confirm the HAWC/MILAGRO detections •
- Detect the sources below 1 TeV •
- Identify the source(s) of LHAASO J1956+2845:

3) TEV HALO [assuming Geminga scale relations] J1954+286

- $\theta = 0.25 \deg d_{2 \, \text{kpc}}^{-1}$ $\theta_{\rm obs} \le 0.14 \deg$
- $\phi_7 = 24 \times 10^{-15} \,\mathrm{TeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,d_{2\,\mathrm{kpc}}^{-2}$ $\phi_{\rm obs} = (6.4 \pm 0.8) \times 10^{-15} \,\mathrm{TeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

J1957+291

•
$$\theta = 0.25 \deg d_{2 \, \rm kpc}^{-1}$$

 $\theta_{\rm obs} \le 0.14 \deg$

• $\phi_7 = 8 \times 10^{-15} \,\mathrm{TeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1} \,d_{2\,\mathrm{kpc}}^{-2}$ $\phi_{\rm obs} = (6.2 \pm 0.7) \times 10^{-15} \,\mathrm{TeV} \,\mathrm{cm}^{-2} \,\mathrm{s}^{-1}$

RX J1952.2+2925:

- pulsations undetected yet
- $\tau = 10 100$ kyr (thermal spectrum), $d \approx 1 5$ kpc (X-ray absorption)
- X-ray point thermal source (F_{0.2-2 keV} = 5.4(7)×10⁻¹³ erg/cm²/s) + extended non-thermal source of r~20" (F_{2-20 keV} = 2.4(1)×10⁻¹³ erg/cm²/s)
- γ -ray pulsar ($F_{0.1-100 \text{ GeV}} = 1.0(2) \times 10^{-11} \text{ erg/cm}^2/\text{s}$)

DA 495 (or SNR G65.7+1.2):

- $\tau \approx 20 100$ kyr, $d \approx 1 5$ kpc (HI absorption)
- PWN or SNR? Shell like structure but polarization (black dashed lines) centered in NS position; torus of material ejected by the progenitor star
- Radio (image) and TeV (white contours) r~0.12 deg

Kothes+ 2008, ApJ 687, 516 Karpova+ 2015, MNRAS 453, 2241 Coerver+ 2019, ApJ 878, 126 4FGL-DR3

RX J1952.2+2925:

- pulsations undetected yet
- $\tau = 10 100$ kyr (thermal spectrum), $d \approx 1 5$ kpc (X-ray absorption)
- X-ray point thermal source (F_{0.2-2 keV} = 5.4(7)×10⁻¹³ erg/cm²/s) + extended non-thermal source of r~20" (F_{2-20 keV} = 2.4(1)×10⁻¹³ erg/cm²/s)
- γ -ray pulsar ($F_{0.1-100 \text{ GeV}} = 1.0(2) \times 10^{-11} \text{ erg/cm}^2/\text{s}$)

DA 495 (or SNR G65.7+1.2):

- $\tau \approx 20 100$ kyr, $d \approx 1 5$ kpc (HI absorption)
- PWN or SNR? Shell like structure but polarization (black dashed lines) centered in NS position; torus of material ejected by the progenitor star
- Radio (image) and TeV (white contours) r~0.12 deg

Kothes+ 2008, ApJ 687, 516 Karpova+ 2015, MNRAS 453, 2241 Coerver+ 2019, ApJ 878, 126 4FGL-DR3

- *B* = 10 µG
- *W*_e = 10⁴⁶ erg
- ECPL with Γ = 2.45 and E_c = 50 TeV (or 17 TeV)

- *B* = 10 µG
- $W_{\rm p} = 10^{48} \, {\rm erg}$
- ECPL with Γ = 1.6 and E_c = 90 TeV (or 30 TeV)

What CTA can do:

- $R \approx 2.2 \text{ pc } d_{1 \text{ kpc}}$
- Spatially-resolved analysis can help to discriminate between PWN and SNR (confirm or discard the hole at TeV energies)
- Solve the tension between VERITAS and HAWC and properly fit the SED (leptonic vs hadronic scenario)

Still missing: Measure the timing parameters (through FERMI or X-ray data) to infer the age and the energetics of the pulsar

Thanks for the attention!

Breaking news!!!

Cao+ 2023, TODAY

Breaking news!!!

1 – 25 TeV 25 – 100 TeV

J1956+2921

J1959+2846u

> 100 TeV

Breaking news!!!

 $N_0/10^{-13}$ at 3 TeV, range 1–25 TeV [WCDA] $N_0/10^{-16}$ at 50 TeV, range >25 TeV [KM2A]

Source name	Components	$lpha_{2000}$	δ_{2000}	$\sigma_{p,95,stat}$	r_{39}	TS	N_0	Г	TS_{100}	$Asso.(Sep.[^{\circ}])$
1LHAASO J1956 $+2921$	WCDA	299.24	29.35	0.38	$0.99{\pm}0.07$	161.3	$1.47{\pm}0.16$	$2.03{\pm}0.06$		LHAASO J1956+2845 (0.63)
	KM2A	298.84	28.92	0.23	$0.78{\pm}0.05$	151.3	$1.62{\pm}0.14$	$3.42{\pm}0.12$		
1LHAASO J1959+2846u	KM2A	299.78	28.78	0.09	$0.29{\pm}0.03$	213.2	$0.84{\pm}0.07$	$2.90{\pm}0.10$	74.0	
	WCDA						< 0.38			
	de				1		1.4		-	

- 1LHAASO J1956+2921 is a large extended source with the $r_{39} \sim 0.99^{\circ}$ WCDA component and the $r_{39} \sim 0.78^{\circ}$ KM2A component. It is resolved from the public LHAASO source LHAASO J1956+2845. At 0.36° away from the position of WCDA component, the shell type SNR with radio size of $31' \times 25'$ is found.
- 1LHAASO J1959+2846u is an UHE TeV source with the extension size of $r_{39} \sim 0.3^{\circ}$ only detected by KM2A, which is also resolved from previous public source LHAASO J1956+2845. The pulsar PSR J1958+2846 (0.1° away, $\dot{E} = 3.42 \times 10^{35}$ erg s⁻¹, d = 1.95 kpc, $\tau_c = 21.7$ kyr) is the only pulsar counterpart in our searching radius. SNR G065.8-00.5. and SNR G066.0-00.0 are found at 0.16° and 0.39° away from the position of 1LHAASO J1959+2846u, with a radio size of $\sim 10' \times 6'$ and $\sim 30' \times 25'$, respectively.

CTAO angular resolution

https://www.cta-observatory.org/science/ctao-performance

CTAO sensitivity

NB: a factor ~3 worse for sources of 0.25 deg

https://www.cta-observatory.org/science/ctao-performance

10-year GPS sensitivity

