

VI Euclid-IT meeting, Jan 20th, ASI, Rome

Galaxy Clustering

The ESA Euclid Science Requirements

Sector	Euclid Targets
	• Measure the cosmic expansion history to better than 10% in redshift bins $0.9 < z < 1.8$.
Dark Energy	· Look for deviations from $w = -1$, indicating dynamical Dark energy.
	• Euclid <i>primary probes</i> to give FoM _{DE} \geq 400 (1-sigma errors on $w_p \& w_a$ of 0.02 and 0.1 respectively)
Test Gravity	• Measure the growth index, γ , with a precision better than 0.02
	• Measure the growth rate to better than 0.02 in redshift bins between 0.9< $z < 1.8$
	· Separately constrain the two relativistic potentials. ψ and ϕ
	· Test the cosmological principle
Dark Matter	 Detect Dark matter halos on a mass scale between 10⁸ and 10¹⁵ M_{Sun}
	Measure the Dark matter mass profiles on cluster and galactic scales
	 Measure the sum of neutrino masses with an accuracy of 0.03 eV
Initial Conditions	• Measure the matter power spectrum on a large range of scales in order to extract values for the parameters σ_8 and <i>n</i> to a 1-sigma accuracy of 0.01.
	• For extended models, improve constraints on spectral indices <i>n</i> and α wrt to Planck alone by a factor 2.
	• Measure a non-Gaussianity parameter : f_{NL} for local-type models with an error < +/-2.
	• DE equation of state: $P/\rho = w$ with $w(a) = w_p + w_a(a_p - a)$ Euclid Redbook

- Growth rate of structure formation: f $\sim \Omega^{\gamma}$;
- $FoM=1/(\Delta w_a x \Delta w_p) > 400 \square ~2\%$ precision on w_p

Measuring the background expansion with GC & WL

 Measure the expansion history H(z) to high accuracy, as to detect percent variations of DE equation of state w(z) with robust control of systematics.

Achieve this through **two probes**:

- A. Using the scale of Baryon Acoustic Oscillations (BAO) in the clustering pattern of galaxies as a standard ruler
- B. Using galaxy shape distortions induced by Weak Gravitational Lensing

Aubourg etal 2015

- Baryon acoustic oscillations (BAO) as a standard ruler
- Sensitive to the expansion history H(z) and angular diameter distance relation $d_A(z)$

$$r_{\parallel} = rac{c\Delta z}{H(z)}$$

 $r_{\perp} = (1+z)D_A(z)\Delta heta$

• Test "beyond Λ " scenario, i.e. an evolving equation of state

Guzzo & GC-SWG (2015)

Measuring the structure growth with GC & WL

1. Measure expansion history H(z) to high accuracy, as to detect percent variations of DE *equation of state* w(z) with robust control of systematics.

- 2. Measure at the same time *the growth rate of structure* from the same **two probes**, to detect modifications of gravity:
 - A. Weak Lensing (WL) Tomography
 - B. Clustering redshift-space distortions (RSD)

A & B are differently sensitive to the Ψ and Φ potentials of the perturbed metric, i.e. to deformation of time and space

• Redshift-space distortions (RSD) probe the growth rate of structure

$$z_{\text{obs}} = z_{\text{c}} + \frac{v_{\parallel}}{c} (1 + z_{\text{c}}) \qquad \qquad \frac{\xi(s)}{\xi(r)} \stackrel{\text{linear}}{=} 1 + \frac{2\beta}{3} + \frac{\beta^2}{5}$$
$$\beta = f(z)/b(z) \simeq \Omega_{\text{m}}(z)^{\gamma}/b(z)$$

• Test "beyond Einstein" scenario, as alternative to GR

0.2

Redshift

Guzzo & GC-SWG (2015)

Euclid

- The lensing kernel is most sensitive to structure halfway between the observer and the source. But the kernel is broad: we do not need precise redshifts for the sources: photometric redshifts are fine
- Since the kernel is broad the tomographic bins are very correlated
- To achieve the science goals we need to measure the matter distribution as a function of redshift: weak lensing tomography requires redshifts for the sources.

Measures a combination of geometry (Hz) and growth

Modelling used for Fisher forecasts (IST:F) arXiv:1910.09273 (now improved by GC-WP:NL & IST:NL)

$$P_{\rm obs}(k_{\rm ref},\mu_{\rm ref};z) = \frac{1}{q_{\perp}^2 q_{\parallel}} \left\{ \frac{\left[b\sigma_8(z) + f\sigma_8(z)\mu^2 \right]^2}{1 + [f(z)k\mu\sigma_{\rm p}(z)]^2} \right\} \frac{P_{\rm dw}(k,\mu;z)}{\sigma_8^2(z)} F_z(k,\mu;z) + \frac{{\sf GC}_{\rm sp}}{P_{\rm s}(z)}$$

Weight functions for GC_{ph} , GC_{sp} & WL

Forecasts of Euclid scientific performance

REFERENCE PAPER: Euclid Consortium, arXiv:1910.09273

Probe combination is key to high precision and accuracy

REFERENCE PAPER: Euclid Consortium, arXiv:1910.09273

SWG Work Packages and ISTs in place

GALAXY CLUSTERING WPs WEAK LENSING WPs Shape Measurement & PSF: Lance Miller Observational Systematics: Claudia Scarlata & Pierluigi Monaco Photo Redshifts: Ranga-Ram Chary & Hendrik Hildebrandt End-to-end: Sylvain de la Torre, Ben Granett & Michele Moresco Estimators: Alex Hall & Michael Brown Likelihood Fitting: Julien Bel & Carmelita Carbone Mass Mapping: Sandrine Pires & Nicolas Martinet Non-linear effects: Martin Crocce, Elena Sarpa & Alfonso Veropalumbo Higher Order Stats: Ismael Tereno & Vincenzo Cardone Higher-order stats: Cris Porciani & Emiliano Sefusatti Likelihood: Elena Sellentin & Vincenzo Cardone Additional GC probes: Florent Leclercq & Cora Uhlemann Galaxy-Galaxy Lensing: Eric Jullo & Mike Hudson Photo-z clustering: Isaac Tutusaus & Stefano Camera Intrinsic alignment: Benjamin Joachimi & Bjoern Malte Schaefer Magnification: Chris Duncan & Dipak Munshi Cosmic Voids: Nico Hamaus, Seshadri Nadathur & Alice Pisani Cosmological Sims: Joachim Harnois-Déraps & Carlo Giocoli Forward modelling: Peter Taylor & Dipak Munshi

- 1. **IST:NL**: Adding super sample covariance (SSC) (Sciotti, Lacasa, Bonici, Cardone)
- 2. GC-WP:Photo: Optimising the WL&GC_{nh} n(z) choices (Camera, Cardone)
- 3. GC-SWG&PC-TT: Including purity effects and systematics (Carbone, Cardone, Granett, Monaco, Moresco, Risso, Parimbelli)
- 4. IST:NL&GC-WP:NL: GC_{sp} nonlinear modelling and emulators (Moretti, Bonici, Carbone, D'Amico, Sefusatti, Pardede, Biagetti, Veropalumbo, Guidi, Moresco, Rizzo, Piga)
- 5. IST:NL&CoS-SWG: WL&GC_{ph} nonlinear modelling and emulators (Camera, Giocoli, Bonici)
- 6. GC-OULE3&GC-SWG: Estimator validation & testing (Marulli, Moresco, Veropalumbo, Salvalaggio, Pardede, Rizzo, Parimbelli, Tavagnacco, Bardelli, Monaco, Sefusatti, Castorina, D'Amico)
- 7. IST:NL&GC-WP:NL: Analytic covariance matrices for GC_{sp} (Salvalaggio, Pardede, Biagetti, Rizzo, Veropalumbo, Monaco, Sefusatti)
- 8. IST:NL&GC-WP:NL: Analytic covariance matrices for WL&GC_{nh} (Sciotti, Bonici)
- 9. GC-OULE3&CoS-SWG&GC-SWG: Mocks & numerical covariance matrices (Monaco, Parimbelli, Veropalumbo, Giocoli,

10. IST:L&GC-WP:Like: Full likelihood via standard and deep learning solutions (Bonici, Camera, Cardone, Carbone, Davini,

Di Domizio, Sciotti, Martinelli)

Carbone, Baldi, Carella)

11. **GC-WP:NL**: Improving BAO measurements via reconstruction (Veropalumbo)

Deep learning example: Speeding up cosmological parameters inference with 2pt-emulators and differentiable likelihoods

Bonici, Carbone, D'Amico & Euclid Consortium, in prep.

GC_{sp} likelihood:

- Trained emulators to mimic PyBird predictions for GC_{sp} power spectra at all Euclid spectro redshifts
- Improved performance, the **likelihood computation** when considering 4 spectroscopic bins and 3 multipoles requires **0.5 milliseconds**
- For the full GCsp-sample the **chains run** in about **1 hour** and have shown a optimal **convergence** and **stability** using Hamiltonian MCMC.
- Possible merging and benchmark for CLOE

Euclid Pre-launch Key Project GC-6 paper-3 under GC-SWG WP:Likelihood (led by Carbone and Bel)

Don't forget cosmic voids! Parameter inference from photo&spectro voids

Italy

'Photo-z clustering' WP

- Leads: <u>Stefano Camera</u> & Isaac Tutusaus (<u>https://euclid.roe.ac.uk/projects/gcswg/wiki/Photo-z_clustering</u>)
- Contribution to the GCph recipe in IST:L, IST:NL, and SPV3
- Involvement in the 'Visibility Mask' Tiger Team (lead by B. Joachimi)
- 13 KP Papers (4 _____):

'Photo-z clustering' WP + KP-GC-7

Italy

- Leads: <u>Stefano Camera</u> & Isaac Tutusaus (<u>https://euclid.roe.ac.uk/projects/gcswg/wiki/Photo-z_clustering</u>)
- 13 KP Papers
 - 3 already published:
 - 1. Magnification and other relativistic effects [https://arxiv.org/abs/2110.05435]
 - 2. GCph sample optimization [https://arxiv.org/abs/2104.05698]
 - 3. Ensemble photo-z's (KP -> SP Paper upon the authors' request) [https://arxiv.org/abs/2109.07303]
 - 3 ready/submitted to ECEB:
 - 4. RSDs in Limber approximation
 - 5. Impact of super-sample covariance on photometric clustering and 3x2pt
 - 6. Forecast measurements of clustering, growth, and magnification via the spectro- and photo-z samples
 - others work in progress, amongst which:
 - 7. Measurements of BAOs in harmonic space with the photometric sample
- Contribution to the GCph recipe in IST:L, IST:NL, and SPV3

ŀ

Agenzia Spaziale Italiana

5 + 1 (Known and Unknown) Facts about CLOE

Vincenzo F. Cardone - Osservatorio Astronomico di Roma

VI Euclid Italia Meeting - 20/01/2023

Fact no.1: What is CLOE (Cosmology Likelihood of Observables in Euclid)

- Official Euclid Likelihood code for primary probes: photometric (3x2pt) and spectroscopic (clustering)
- A joint community effort to get the cosmological results: input from SWGs + OUs + IST:NL to IST:L
- More than the likelihood alone: compute theory, include systematics, compare to data, sample parameters

Fact no.1: What is CLOE (Cosmology Likelihood of Observables in Euclid)

Fact no.2: What is in CLOE v2 and where are we now

90%	 3x2pt recipe implemented GCsp recipe implemented nonlinear models for 3x2pt and GCsp parameterized modified gravity 	 allow for non flat models include magnification and (linear) RSD merging done for 3x2pt, ongoing for GCsp Linder gamma and phenomenological MG
85%	 3x2pt observables and systematics GCsp observables and systematics impact of the mask in 3x2pt BNT for improving scale cuts 	 power spectra, 2pt CFs, and Pseudo Cl Legendre multipoles and 2pt CF shear multiplicative bias and photo - z shift purity (constant or varying with z)
70%	 interface with data user interface (at different levels) graphical user interface (GUI) training for Euclid community 	 need to be connected to SAS overlayer and scripts to run MCMC help non expert users to play with CLOE how to use CLOE for your project
10%	 Validation 	 compare with external benchmark optimize if needed validation plan ready benchmark codes available
10%	MCMC forecasts	 defined the cases of interest prepared scripts for running found computing resources (volunteer) install CLOE on available resources

Fact no.3: CLOE vs SPV3 vs DR1/DR3 from the 3x2pt Point of View

SPV3 Forecasts	SPV3 Pre Launch	DR1 Data Analysis	DR3 Data Analysis
CLOE v2	CLOE v2.1	CLOE v3	CLOE v3.1 (?)
 realistic n(z) number of bins type of bins priors on shear bias photo - z mag bias gal bias baryons recipe priors scale cuts BNT transform 	 n(z) for WL and GCph requirements on n(z) mean variance (?) bin shape (?) recipe verification measure Cij comparison data interface from SAS survey mask redshift cuts (if any) full SSC covariance 	 high order effects reduced shear shear mag clustering advanced IA models TATT halo model systematics scale dep bias PSF errors covariance nonlinear bias beyond Limber 	 unknown leftovers speed usefulness systematics covariance mock

Fact no.4: CLOE vs SPV3 vs DR1/DR3 from the GCsp Point of View

SPV3 Forecasts	SPV3 Pre Launch	DR1 Data Analysis	DR3 Data Analysis
CLOE v2	CLOE v2.1	CLOE v3	CLOE v3.1 (?)
 realistic n(z) which observable multipole 2ptCF modeling 1 loop PT simplified scale cut priors on gal bias 1 loop params 	 realistic n(z) purity dependent on z interlopers (?) modeling full recipe scale cut priors gal bias PT params purity 	 systematics signal covariance alternative recipes SWG approved worthy suitable for MG covariance DR1 mocks analytic (3x2pt) x GCsp 	 unknown leftovers speed usefulness systematics covariance
puritycovariance	 convolution with WF covariance with WF 	 signal covariance 	 DR3 mocks

Fact no.5: CLOE vs the Medusa approach to Blinding

CLOE & Euclid

who runs MCMC?non IST:L versions

CLOE vs the World

DR1 KPs

no public release?

Freezing CLOE

- when: after v3?
- *what:* theory recipes only?
- *how:* no modifications?
- what if: new systematics?
- what if: speed up methods?

Fact no.5 + 1: CLOE and the Italian Scientific Community

Italy in IST:L

- V.F. Cardone (lead)
- S. Camera and M. Martinelli (scrum masters)
- M. Bonici, S. Davini, S. Di Domizio, D. Sciotti (developers)

Italy in SWGs/OUs related to IST:L

- M. Carbone (GCSWG Likelihood WP lead)
- V.F. Cardone (WLSWG Likelihood WP lead)
- C. Giocoli (IST:NL lead & WLSWG CosmoSim lead)
- M. Bonici, D. Sciotti (3x2pt covariance taskforce in IST:NL)
- P. Monaco, E. Sefusatti et al. (GCsp related OUs)
- An Italy driven product at all levels: theory + nonlinearity + data + covariance + implementation
- Beware of not wasting the efforts! Non staff people moving to other Euclid countries just when data come

from the spectroscopic catalog to cosmology

Euclid Italia 2023 Roma - ASI

Emiliano Sefusatti Osservatorio Astronomico di Trieste

Estimators OULE3

Make sure that all products have potential systematic errors under control: *the target is well below 1%!*

- Galaxy density estimation
- Random density
- Box effects
- Etc ...

All processing functions are developed and tested in Italy

A lot more needs to be done to determine the optimal use of these tool

Crucial topic but very limited workforce!

Mock catalogs OULE₃ / GC-SWG

Mocks are essential to estimate statistical errors and quantify systematic errors

A proposal to focus our efforts on two geometries:

- DR1-size mocks
- Flagship simulation light-cones

All realistic mocks of the spectroscopic samples arbased on the Pinocchio code and run in Trieste

They are still relatively small: not accounting for all possible finite-volume effects and *all probes!*

Interactions with CLOE OULE3 / GC-SWG / IST:Nonlinear / IST:Likelihood

Several pieces of the full pipeline are still missing:

- Data model
- Window function (and more ...) $\widetilde{P}_{\ell}^{\text{obs}}(k) = M_{\ell\ell'}(k, k') P_{\ell'}^{\text{theory}} - \text{IC}(k)$
- Analytical covariance

These algorithms require *extensive* testing

Again: a lot of work and very small workforce

Italian participation is substantial (but too much based on students!)

Errors can be predicted in PT to high accuracy

Wadekar & Scoccimarro (2020)

Modelling challenge GC-SWG / IST:Nonlinear

A test of the models and of likelihood analysis choices

Full shape & BAOs fitting of P(k), $\xi(s)$ and higher-order correlation functions

Five different codes:

- Comet
- PBJ
- PyBird
- Code by A. Moradinezhad
- Bacco

Benchmarks for CLOE

2023: first full light-cone analysis from Falgship simulation

- WPs NL & Higher Order Stats with Italian leads
- PBJ & PyBird are mainly developed in Italy

Observational Systematics GC-SWG /OULE3

Observational systematics from:

- modulations of the flux limit
- line interlopers (ELGs with misidentified line)
- noise interlopers (sources acquiring a line due to noise)

The main tool to mitigate observational systematics is **the random catalog**, a forward model of completeness and purity.

Uncertainty in the mitigation of systematics will be propagated to cosmological parameters by computing **the numerical covariance of a set of mocks with added systematics** - an operation to be performed by the SWG outside the pipeline

Strong Italian contribution: leadership of ObsSys (Monaco) and E2E (Granett, Moresco) WPs.

This is a topic where we should consolidate our leadership

the status

- several *critical and crucial* open issues
- but a well defined roadmap
- significant (*but relative!*) Italian contribution
- still a lot of opportunities (maybe not for too long!)

Euclid Meeting Italia 2023 - ASI Roma

IST:NL & Simulations

going beyond linear scales in cosmological analyses

MAXIMIZING THE SCIENTIFIC RETURN OF THE EUCLID MISSION

Carlo Giocoli – INAF OAS Bologna

Talking on behalf of IST:NL leads <u>GIOCOLI</u>, CROCCE and POURTSIDOU and many other contributors to the developments

Second Order Statistics PHOTOMETRIC OBSERVABLES

$$C_{\ell}^{AB} = \int \mathrm{d}z \; \frac{\chi'(z)}{\chi^2(z)} \; \omega^A(\chi) \; \omega^B(\chi) \; P\left(\frac{\ell}{\chi(z)}, z\right)$$

χ radial distance

 $\omega^A(\chi)$ kernel of a given observable: photometric clustering or lensing

$$P\left(rac{\ell}{\chi(z)},z
ight)$$
 matter power spectrum at $k=rac{\ell}{\chi(z)}$ and redshift z

Second Order Statistics PHOTOMETRIC OBSERVABLES

expected photometric redshift distributions for 10 intervals

 $H(\gamma)$

$$egin{aligned} W^{\mathrm{A}}_i(z) &= b^{\mathrm{A}}(z) rac{\Pi(z)}{c} n^{\mathrm{A}}_i(z) & ext{Clustering} \ W^{\gamma}_i(z) &= rac{3}{2} igg(rac{H_0}{c}igg)^2 \Omega_{\mathrm{m}}(1+z) \chi(z) \int_z^{z_{\mathrm{max}}} \mathrm{d}z' \, n^{\mathrm{ph}}_i(z') \left[1 - rac{\chi(z)}{\chi(z')}
ight] \end{aligned}$$

Weak Lensing (+IA components)

Build up reliable models for the matter power spectrum as a function of redshift

EFFORTS AND WORKS ON COSMOLOGICAL SIMULATIONS

$$P\left(rac{\ell}{\chi(z)},z
ight)$$
 matter power spectrum at $k=rac{\ell}{\chi(z)}$ and redshift z

Motivation

- Euclid science relies on the ability to model observed (and simulated) datasets and extract cosmological information exploiting nonlinear scales
 - Wrong and/or incomplete models may bias cosmological results
- Those could affect both main probes: Galaxy Clustering and Weak Gravitational Lensing
- The idea is to collect and join together expertise from the different SWGs and develone the models, the code, and validate them with *challenges*
- IST-Nonlinear has the charge of coordinating those
- Combine common tools for cosmological exploitation: GC, WL + CG with the help of dedicated simulations (CosmoSim)

STRONG SYNERGY AND COMMUNICATION WITH ALL SWGs and WITH THE IST-Likelihood

Likelihood and Cosmology

- Develop a consistent model and code for main Euclid observables — to be used by IST:Likelihood: redshift space clustering, bias, photo-*z* clustering, shear-shear, galaxy-shear, Intrinsic Alignments, BAO in reconstructed field, that can reach "smaller" scales; also define reliable scale cuts
- Come up with a validation procedure for the above model and code
- Make sure we have an analytical covariance beyond the gaussian approximation & study non-linear impact on covariance

STRONG INTERFACE WITH THE IST:L CODE DEVELOPMENTS AND DEVELOPERS

Challenges on small scales

Challenges on small scales

$$C_{\ell}^{AB} = \int dz \; \frac{\chi'(z)}{\chi^2(z)} \; \omega^A(\chi) \; \omega^B(\chi) \; P\left(\frac{\ell}{\chi(z)}, z\right)$$

probing the growth of structures filling the gap between low and high redshift (~CMB) cosmological probes!

IST:NL model library: current status

List of our implemented models/tools

- Linear theory from camb/class (default in Cobaya/CLOE)
- BACCO linear theory emulator
- Halofit : darkmatter
- Euclid Emulator 2 (EE2) : dark matter
- HMcode : dark matter and baryons
- BACCO nonlinear emulators : dark matter and baryons
- BCemu emulator: baryons
- Spectroscopic galaxy clustering (one-loop with counterterms, Ivanov et al. model), with FAST-PT
- PySSC & PyCCL : 3x2pt covariance, including super-sample covariance

IST:NL

Examples

Implementing and benchmarking non-linear models: ISTNL_modelling DEMO (Jupiter notebook)

P. Carrilho, G. Canas, <u>M. Martinelli</u> et al.

WL C_{ℓ}^{ij}

IST:NL

Examples

Implementing and benchmarking non-linear models: ISTNL_modelling DEMO (Jupiter notebook)

P. Carrilho, G. Canas, M. Martinelli et al.

GC photo C_{ℓ}^{ij}

Examples

Implementing and benchmarking non-linear models: ISTNL_modelling DEMO (Jupiter notebook)

P. Carrilho, G. Canas, <u>M. Martinelli</u> et al.

IST:NL Analytical recipes

3x2pt Covariance Taskforce

M. Bonici, D. Sciotti, F. Lacasa, K. Benabed, S. Camera, V. Cardone, M. Martinelli et al.

Write down the analytical recipes for the 3x2pt covariance in term of the Angular Fourier Space modes C(I)

Necessary to go beyond IST:forecast and run MCMC analyses Leading the cosmological analysis in SPV3

Expected errors on the data: covariances IS THERE ANY POSSIBILITY TO LOOK AT NEW PHYSICS?

Expected errors on the data: covariances IS THERE ANY POSSIBILITY TO LOOK AT NEW PHYSICS?

IST:NL covariances

3x2pt Covariance Taskforce

Frozen the covariance for SPV-3: Gaussian plus Super Sample Term consistently accounting for non-linear effects. Interfaced with PySSC.

Building a much more direct interface with **CLOE**

- The Covariance Calculation will remain external to CLOE -

- additional computation method via use of AngPow
- massively parallelised
- computation in flat sky

(small circular survey, an approx often used in previous literature)

- computation for partial sky coverage (masks...)

D. Sciotti & M. Bonici

IST:NL covariances & simulations

2022

3x2pt Covariance Taskforce

At some point we need to think about the CNG to the 3x2pt covariance

... studying how to fully include it studying Rubin-LSST (PYCCL), DES (Cosmo-like) & KiDS (Halo Model based covariance)

Howls project: M. Baldi, C. Carbone, V. Cardone, C. Giocoli et al.

Weak lensing cosmological simulations

No KP associated to this yet.

WP work:

- Make mock data for HOWLS Key Paper 1, 2, 3
- Make mock data to construct numerical covariance matrix for 3x2pts
- Develop suite of lensing mocks with baryons & IA to enable modelling of key • systematics

The above currently use the DUSTGRAIN-pathfinder, SLICS & cosmo-SLICS simulations We are in the process of upgrading with the BACCO simulations for key paper 3. Dedicated moks using the DEMNUni cov: 50 runs, 1 Gpc/h by side and 3200 light-cones 10 deg by side. 2013

al.

e

MapSim: Giocoli

J. Harnois-Deraps & C. Giocoli

we need to marginalise over a series of nuisance parameters when modelling non-linear scales...

MCMC analyses in flat ACDM cosmology

Impact of SSC on parameter constraints

3x2pt photometric data: HMCode model: HMCode covariance: HMCode

- Blue dashed lines: SSC+Gaussian covariance
- **Orange** solid: Gaussian covariance.

FoM: 401 (with SSC), FoM: 1073 (just Gauss)

Santiago Casas