Dissecting Cluster Cosmology: toward a roadmap for forthcoming cluster surveys

tSZ cluster cosmology Planck, SPT and beyond ...

Laura Salvati

In collaboration with: Marian Douspis, Nabila Aghanim, Adelie Gorce, Alex Saro, Raphael Wicker, Gaspard Aymerich, Stefano Gallo, Gabriel Pratt and many others ...

Outline

- Planck tSZ observations
 - Still room for improvement
 - tSZ power spectrum
 - Combination with other experiments
 - Planck + SPT
- Impact of HMF calibration

Planck cluster cosmology

Scaling Relations

Laura Salvati

Cosmological cluster sample: 439 clusters $E^{-\beta}(z) \left[\frac{D_A^2(z) Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = Y_* \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \cdot 10^{14} M_{\odot}} \right]^{\alpha}$ 10 M_☉] α, Y_* from X-ray observations M₅₀₀ [10¹⁴ | **20 clusters** (1 - b)from WL mass evaluations **71 clusters** $\beta = 2/3$ from self-similarity Planck Collaboration, A&A 594 (2016) A24 Planck Collaboration, A&A 594 (2016) A24 Common PSZ1-PSZ2 New detections PSZ2 $\rightarrow (1-b) = \frac{M_{\rm SZ}}{M_{\rm 500}}$ 0.0 0.2 0.4 0.6 0.8 1.0 Redshift

Dissecting Cluster Cosmology

3

Planck cluster cosmology

Zubeldia & Challinor, MNRAS 489, 401–419 (2019)

Data set	$1 - b_{SZ}$
WtG	0.688 ± 0.072
CCCP	0.780 ± 0.092
Sereno et al. $(2017)^a$	0.66 ± 0.10
Penna-Lima et al. (2017)	0.73 ± 0.10
Medezinski et al. (2018)	0.80 ± 0.14
Hurier & Lacasa (2017)	0.71 ± 0.07
Planck 2015 CMB lensing ^b	$1.01^{+0.24}_{-0.16}$
Planck 2015 SZ + Planck 2018 CMB	0.62 ± 0.04
This work	0.71 ± 0.10

Planck cluster cosmology

Mass bias

 $(1-b) \simeq 0.6$ too low!

Gas fraction

see also results in Gianfagna et al, MNRAS 502 (2021) no.4, 5115-5133

Dissecting Cluster Cosmology

Tension or mass calibration?

Laura Salvati

Dissecting Cluster Cosmology

Mass bias: (M,z) dependence

Results from other analyses

- WtG (22 clusters) and CCCP (18 clusters) mass dependence: decreasing trend
- CoMaLit analysis Sereno&Ettori, MNRAS 468 (2017) no.3, 3322 redshift dependence: decreasing trend (135 clusters)
- X-COP analysis Eckert et al, A&A 621, A40 (2019) mass dependence: decreasing trend (12 clusters)

Dissecting Cluster Cosmology

New scaling relation calibration


```
Laura Salvati
```

New scaling relation calibration

Aymerich et al., in prep.

Santos et al., ApJ 914 (2021) 1, 58

PRELIMINARY scaling relation:

$$E^{-2/3}(z) \frac{D_A^2 Y_{500}}{10^{-4} \mathrm{Mpc}^2} = \underline{10^{-0.29 \pm 0.01}} \left(\frac{(1-b)M_{500}}{6 \cdot 10^{14} M_{\odot}} \right)^{\underline{1.71 \pm 0.1}}$$
 Scatter: 20%

Planck collab. 2015 Cosmology from SZ number counts scaling relation :

$$E^{-2/3}(z) \left[\frac{D_{\rm A}^2 Y_{500}}{10^{-4} \,{\rm Mpc}^2} \right] = \underline{10^{-0.19 \pm 0.02}} \left(\frac{(1-b) M_{500}}{6 \times 10^{14} M_{\odot}} \right)^{\underline{1.79 \pm 0.08}}$$
 Scatter: 18%

The new scaling relation has: Lower normalization: Chandra and XMM temperature calibration don't match, Chandra measures hotter and thus heavier cluster. The difference is coherent with predictions from Schellenberger et al. 2015 (20% difference)

Shallower slope: The new scaling relation is closer to self-similar (slope of 5/3)

Comparable uncertainties: Lower uncertainties on $Y_{SZ}-M_{Y_X}$ (larger sample) but higher uncertainties on $Y_X-M_{Y_X}$ compensates the difference

Modelling of Selection function

Gallo et al., in prep.

11

Modelling of Selection function

Laura Salvati

Dissecting Cluster Cosmology

Salvati+ A&A 614 (2018) A13

Dissecting Cluster Cosmology

Salvati+ A&A 614 (2018) A13

Dissecting Cluster Cosmology

- tSZ/kSZ is hidden among many other signals
- tSZ/kSZ not negligible at small scales as Primordial CMB damped

Dissecting Cluster Cosmology

From halo model:
$$Cls[\Theta] \equiv \iiint dMdz \ dV \ \chi(obs) \ S(obs - M) \ dMdz \ p(M, z)$$

Random Forest emulator for tSZ power spectrum Douspis, Salvati et al., A&A 659 (2022) A99

Laura Salvati

Dissecting Cluster Cosmology

Cluster cosmology

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

Paper I. Combining Planck and SPT Cluster Catalogs: Cosmological Analysis and Impact on the Planck Scaling Relation Calibration

First combined cosmological analysis of Planck and SPT-SZ cluster catalogs
 Independent calibration of Planck scaling relations, exploiting cosmological constraining power of SPT-SZ sample

Salvati, Saro + SPT collab. *ApJ* 934, no.2, 129 (2022)

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

Salvati, Saro + SPT collab. *ApJ 934, no.2, 129 (2022)*

Released Catalogs

https://pole.uchicago.edu/public/data/sptplanck_cluster/

Cluster masses M₅₀₀

 marginalising over cosmological and scaling relation parameters

Cluster masses M₅₀₀

 fixed values of cosmological and scaling relation parameters

23

SPT-3G

 10^{1}

The SPT-3G SZ Catalog

- First catalog being produced from 2019-2020 data
- Preliminary cluster run has produced a catalog with 2457 cluster candidates at xi> (>99% purity)
- 5891 candidates at 3.85 < xi < 130.2(!)
- ${
 m M}_{500c}~(10^{14}~{
 m M}_{\odot})$ - Candidates screened through DES, promising targets flagged for additional followup. A total of 12 nights of NIR follow with Magellan/FourStar of SPTpol 500d/ SPT-3G cluster candidates has resulted in 124 SPT-3G cluster candidates with NIR imaging [2 more nights coming this July!], analysis of these systems is ongoing

Laura Salvati

SPT-CL J2344-4243 (Phoenix Cluster, z=0.6) see in SPT-3G data at S/N>120

0.00

0.25

0.50

0.75

1.00

 10^{0}

1.50

1.25

1.75

2.

SPT-SZ/SPTpol ECS

Preliminary!

Planck

SPT-3G

ACT

Dissecting Cluster Cosmology

Salvati+ A&A 643, A20 (2020)

Experiments

Euclid-like

survey area: 15000 deg2 z = [0.1,1.9]

LSST-like

survey area: 18000 deg2 z = [0.1,1.4]

WFIRST-like

survey area: 2400 deg2 z = [0.1,2.0]

Ascaso et al. 2017

Scaling Relations

$$\begin{aligned} x(M_{200}^{\text{ob}}) &= \frac{\ln M_{200}^{\text{ob}} - \ln M_{\text{bias}} - \ln M_{200}}{\sqrt{2\sigma_{\ln M_{200}}^2}} \\ \ln M_{\text{bias}}(z) &= B_{M,0} + \alpha \ln(1+z) \\ \sigma_{\ln M}^2(z) &= \sigma_{\ln M,0}^2 - 1 + (1+z)^{2\beta} \end{aligned}$$

Mass Function

- Tinker et al. 2008 (T08)
- Despali et al. 2016 (D16)

Dissecting Cluster Cosmology

Salvati+ A&A 643, A20 (2020)

Impact of survey area and SR accuracy

Impact of Mass Function NON NEGLIGIBLE!

Increasing accuracy on cosmological parameters

- Larger survey area: larger cluster sample
- More accurate calibration for SR

Planck results: $\sigma_{\sigma_8} = 0.03, \ \sigma_{\Omega_m} = 0.03$

Dissecting Cluster Cosmology

Salvati+ A&A 643, A20 (2020)

Evidence for different z-evolution for T08 and D16

D16 vs T08

- Consistent in the intermediate mass range
- D16 predicts more clusters at high z
- Compensating for different z-evolution $\beta_{\rm D16} < \beta_{\rm T08}$

Salvati+ A&A 643, <u>A20 (2020)</u>

LCDM Evidence for different z-evolution for T08 and Euclid-like, 5% SR, T08 Euclid-like, 5% SR, D16 D16 Euclid-like, 5% SR, T08, β free Euclid-like, 5% SR, D16, β free **D16 vs T08** Consistent in the intermediate mass range • D16 predicts more clusters at high z 0.828 Compensating for different z-evolution • $\beta_{\rm D16} < \beta_{\rm T08}$ ^ю 0.816 **DE:** w_0 , w_a 0.804 -0.96 0.128 8 −1.04 Q 0.112 Euclid-like, 5% SR, T08 Euclid-like, 5% SR, D16 Euclid-like, 5% SR, D16, β prior 0.096 0.112 **B** 0.304 0.312 0.320 0.804 0.816 0.828 0.128 0.096 0.136 Ω_m σ_8 $\sim 8 d$ discrepancy 0.120 z-evolution of the scatter $\sigma_{\ln M}^2(z) = \sigma_{\ln M,0}^2 - 1 + (1+z)^{2\beta}$ 0.104 0.120 **B** 0.136 -1.1Z -1.04 -0.96 0.104 W_0

27

Salvati

Conclusions

- Planck cluster cosmology affected by modelling of
 - Mass calibration
 - Selection function (?)
- tSZ power spectrum
 - Independent information but low constraining power
- Upcoming/future results
 - What will be main systematics?
 - Calibration of HMF?
- Impact of other SZ effects (relativistic SZ, kinetic SZ) on SZ detection? (from Jean-Baptiste talk)