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Flat ΛCDM cosmological model still suffers from 
some problems:

● nature of “dark components”
● behavior of gravity on cosmological scales
● gaussianity of initial conditions
● neutrino masses
● parameter tensions

Standard cosmological model
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Euclid: 
space-based survey mission dedicated to investigate the origin of the accelerating expansion of 
the Universe and the nature of dark energy, dark matter and gravity

➡ improved statistics to try to address unresolved questions



● Visible/near-infrared space telescope 
by the European Space Agency (ESA)

● Two major surveys:

○ Euclid Wide Survey: 15 000 deg2 of the extra-galactic sky

○ Euclid Deep Survey:  ~53 deg2 split over three fields

● 1.2-meter-diameter telescope with two instruments:

○ Visible instrument (VIS)
○ Near Infrared Spectrometer and Photometer (NISP)

● Primary probes: weak lensing and galaxy clustering
Secondary probes: galaxy clusters, strong lensing, …

Euclid mission
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Euclid mission
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http://www.youtube.com/watch?v=CAbS8G9EBng&t=32


Euclid cluster survey
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Cluster survey:

● area = 15000 deg²
● redshift range z = 0.2 - 2
● mass range M > 0.9 - 1.0 x 10¹⁴ M

☉

● Nobj ~ 2 x 10⁵ if N₅₀₀/σ > 5
          ~ 2 x 10⁶ if N₅₀₀/σ > 3

● Cluster detection:
○ photometric data
○ spectroscopic data
○ weak gravitational lensing Sartoris et al. 2016



Systematics
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cosmology-dependent quantities  ➡ to constrain cosmological parameters

mass-observable relation ➡ cluster mass not observable to infer through richness λ

selection functions ➡ observational inaccuracy (photo-z error, projection effects, …)

semi-analytical models ➡ calibrate on numerical simulations

+ cluster detection ➡ to ensure the best final catalog's completeness and purity

+ covariance matrix ➡ to describe statistical errors (shot-noise, sample variance, …)                      
                                            Computed/validated on simulations 



Aim :  validate covariance models for number counts and clustering of galaxy clusters, to 
   properly describe the sources of uncertainty that can affect the cluster observables
   at the Euclid level of accuracy

Inclusion of uncertainties of statistical quantities fundamental to constrain cosmological parameters

To compute the covariance:

● Numerical matrix from a large set of simulations

 +  all the contributes are included
 -   noisy matrix due to finite number of simulations / high computational resources
 -   cosmology-independent matrix

● Analytical models

 +  noise free
 +  cosmology-dependent
 -  difficult to include all the terms (non-linearities, non-Gaussianity, window functions...)

Covariance matrix
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Simulations: PINOCCHIO algorithm

Covariance matrices require large sets of simulations (~103):

➔ not feasible with N-body simulations due to high computational costs
➔ approximate methods: less accurate but faster

PINOCCHIO algorithm (Monaco et al. 2002):

● dark matter halo catalogs through LPT 
and ellipsoidal collapse

● ~10³ times faster than N-body
● 5 – 10% accuracy in reproducing 

2-point statistics, mass function and bias



Simulations
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 1000 Euclid-like lightcones:

- area ≃10300 deg² (a quarter of the sky)
- redshift range  z = 0 - 2
- mass range M = 10¹⁴-10¹⁶ M⊙

- number of objects ~3x10⁵

● Masses rescaled to Despali+16/Castro+22
            halo mass function

● Tinker+10 halo bias model
5-10% agreement with simulations



Covariance matrix from Hu&Kravtsov (2003) model:

Number counts: covariance
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Euclid Collaboration: Fumagalli et al. 2021



● non-negligible sample variance 
   (higher than shot-noise  at low  
    mass/low redshift)

● good agreement between 
numerical and analytical matrix 
(deviations ≲10%)

 

Number counts: covariance 
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Euclid Collaboration: Fumagalli et al. 2021



Model validation and likelihood comparison:

● No differences between numerical and analytical covariance   
➡  ΔFoM = +0%    

● Only shot-noise underestimate the error on parameters          
➡  ΔFoM = -60%  

Number counts: likelihood 
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Euclid Collaboration: Fumagalli et al. 2021

Full covariance needed not to 
underestimate the error on parameters



Number counts: likelihood 
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Euclid Collaboration: Fumagalli et al. 2021

Cosmology dependence of the covariance:

●    Wrong cosmology in the covariance (2σ from Planck 2018) 
➡ ΔFoM = ±40/80%   

●    Cosmo-dependent  covariance                                                       
➡ ΔFoM = +0%

   Cosmology-dependent covariance needed 
   not to under/overestimate the posterior error



  2-point correlation function: 

    excess number of pairs of a given radial separation, 
    relative to that expected for a random distribution

  Measurement: Landy-Szalay estimator:

Clustering: 2-point correlation function
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Theoretical prediction:

   Fourier transform of the (linear) power spectrum
   + radial and redshift binning

r = 20 - 130 Mpc/h     ⇒    linear scales + BAO peak

Clustering: 2-point correlation function
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Covariance matrix from Meiksin & White (1999) model 
(Fourier transform of power spectrum covariance)

Clustering: covariance
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Euclid Collaboration: Fumagalli et al. 2022

Gaussian term

Low-order non-Gaussian term

High-order non-Gaussian terms



● too approximate model:
<10% difference at low redshift
~30-60% difference at high redshift

○ inaccurate bias model
○ non-Poissonian shot noise
○ high-order terms

Clustering: covariance 
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● add three nuisance parameters fitted 
from simulations following  Fumagalli et al. 2022

Euclid Collaboration: Fumagalli et al. 2022



Clustering: covariance 
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With few simulations (~102), accurate 
noise-free, cosmology-dependent covariance matrix

Euclid Collaboration: Fumagalli et al. 2022



Covariance comparison through likelihood analysis :

● Model: underestimates the numerical result (reference)       
➡  ΔFoM = +40%  

● Model+parameters: correctly reproduces numerical result  
➡  ΔFoM = +5%

Clustering: covariance 
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Euclid Collaboration: Fumagalli et al. 2022

When adding fitted parameters, 
accurate description of the covariance



Clustering: Gaussian covariance

● Gaussian covariance: incomplete model                                      
➡  ΔFoM = +20%
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Gaussian covariance not enough
 for cluster clustering covariance

Euclid Collaboration: Fumagalli et al. 2022



Covariance with different degeneracy on parameters 
w.r.t. ξ due to shot-noise ∝ mass function

   Cosmology dependence of the covariance:

●    Wrong-cosmology  covariance (2σ from Planck 2018) 
➡  ΔFoM = ±35%   

●    Cosmo-dependent  ξ+covariance                                        
➡  ΔFoM ~ 150%

Clustering: cosmo-dependent covariance 
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Euclid Collaboration: Fumagalli et al. 2022



Clustering: covariance 
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Euclid Collaboration: Fumagalli et al. 2022



Add mass binning to quantify the information in the mass-dependence of the halo bias

Likelihood forecasts

Clustering: mass binning

23

Euclid Collaboration: Fumagalli et al. 2022



Richness-mass relation:

with

 

+ selection functions P(λob| λ,z) and P(zob|z) to add observational inaccuracy

Covariance model validation for richness-selected clusters
➡ confirm the results in mass-space

Observable space
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Euclid Collaboration: Fumagalli et al. in preparation

λob > 20
zob = 0-2
Nob ~ 10⁵



⟹  ℒTOT  = ℒNC ✕  ℒCL

Joint analysis
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Euclid Collaboration: Fumagalli et al. in preparation

Negligible cross-correlation:

● number counts and clustering independent observables
● Pearson correlation coefficient:   ⍴ = -0.015 ± 0.032
● Result in agreement with Mana et al. 2013 results

∆logℒn   =   logℒn   -〈logℒ〉

n = 1, …, Nmocks

Independent likelihood functions:



Joint analysis
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Euclid Collaboration: Fumagalli et al. in preparation

Likelihood forecasts for Euclid-like survey:
constraints on cosmological and 
mass-observable relation (MoR) parameters

Aλ,Bλ,Cλ,Dλ with
        Gaussian priors with 

                     0,1,3,5% amplitude

Ideal case: 0% prior on MoR

Combined analysis:
cosmological constraints improved by
20 - 90 %, depending on MoR uncertainty



Dataset: 
redMaPPer cluster catalog from
Sloan Digital Sky Survey data release 8 (SDSS DR8)

Catalog:
Sky area:   Ω ~ 10 000 deg2

Redshift:  z = 0.1 - 0.3
Richness:  λ ≥ 20
#cluster:  N ~ 7 ✕ 104

Analysis: 
repeat the analysis by Costanzi et al. 2018 
(number counts + weak lensing masses)
with addition of cluster clustering

Application to SDSS data
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Fumagalli et al. in preparation



Application to SDSS data
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Fumagalli et al. in preparation

Results:

● CL helps to constrain Ωₘ

● NC+CL don’t constrain MoR ⇒ σ₈

● MWL +CL better than NC+MWL

● high improvement from NC+CL+MWL

● different systematics on CL and NC



Number counts:
● accurate analytical covariance model 
● Gaussian likelihood with cosmology-dependent full covariance 

Clustering:
● accurate semi-analytical covariance model  

● 2PCF covariance contains cosmological information (∝ 1/n) that is not present in the mean value 
● useful information also when considering mass binning

Joint:
● improved cosmological constraints (~ 20-90% improvement)
● ~160% improvement from combined analysis(Ωₘ =  0.27 ± 0.03 , σ₈ = 0.81 ± 0.05)
● different systematics between cluster counts and clustering 

⇒ can help to improve mass calibration?

 

Conclusions
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Backup slides



Observable space

     Cluster counts      Cluster clustering

from Sereno et a. 2015



Cosmology-dependent covariance statistically preferred (<∆DIC> = −11.5 ± 1.6)

Clustering: cosmology-dependence

Input cosmology Cosmology-dependent ∆DIC = DICcosmo − DICbestfit



Application to SDSS data
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Application to SDSS data
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Covariance fit

Set of M simulations, producing measurements mi with dimension N
Model covariance C(θ), with θ=model parameters

Gaussian likelihood

MCMC process to maximise logℒ and fit θ



Bayesian method for fitting the covariance model parameters by examining the        distributions from simulations:

 A good covariance produces       values distributed following a       distribution 

Covariance parameters fit
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Fumagalli et al. 2022



Weak-lensing signal: tangential alignment of background galaxies around
       the foreground cluster due to gravitational lensing

       ⟹ probe the projected mass distribution of clusters

Observed WL mass: 

Expected WL mass:

Weak-lensing mass calibration



● Validate analytical models, by comparison with numerical matrix:
evaluate which terms are important or negligible, add nuisance parameters to improve accuracy, . . . 

● Test covariance models in cosmological analysis, by constraining Ωm and σ₈ through Bayesian inference:
 comparison of different likelihood and covariance configurations

d = data
θ = parameters in the model

p(θ|d)  = posterior distribution
ℒ(d|θ)  = likelihood function
p(θ)      = prior distribution

Methods
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