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Key issues for cluster cosmology
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selection observable—-mass relation

* Accurate determination of the “mass scale” of an
observable-selected sample is key to use clusters as a
cosmological probe

— Need to account for all relevant physical and
observational effects in cosmological inference and mass
calibration (< a few % for all-sky surveys)

* |tis also essential to have accurate characterization of
observable-selected samples in terms of:

— Survey selection function across the redshift range

— Observable-mass scaling relations and their intrinsic
scatter (covariance)



Gravitational lensing: Shear
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Gravitational densing: Magnification
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Shear and Convergence
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Weak-lensing (WL) mass measurements

Tangential shear fitting of individual clusters with an NFW

halo description (or its variants: e.g., Einasto, DK14, halo model. ..)
r [kpe/h] AZ(R) = Z(<R) - Z(R)
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mass (Hoekstra 03; Gruen+15; Umetsu+16) C = C + C™ + cmt

Other features: miscentering (see Tim’s talk), baryonic feedback,
splashback feature, 2-halo term  For 3 review, Umetsu 2020, A&ARV,28, 7
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Ensemble mass modeling procedures

Conventional single-mass-bin fit to the stacked
lensing profile <g,>(R)

Population modeling of the stacked lensing profile,
accounting for the mass function and the selection
function (e.g., Miyatake+19: ACTPol-HSC)

. Hierarchical Bayesian population modeling of all

individual clusters in din(y, Y dIn(M,q) ~ 1
* M, domain (Umetsu+20: XXL-HSC) (Q9uri & Takada 11)
* ¢g.(R) domain (Chiu+22: eFEDS-HSC)

Likelihood-free inference using forward simulations
(Tam, Umetsu, & Amara+22)

More flexible: properly accounting for
selection/statistical effects, mass modeling bias, etc.



Multivariate Gaussian
Likelihood Approach



Bayesian population modeling of cluster observables
Multivariate Gaussian likelihood function P(x,y| 6)

e.g., Kelly 07 (LINMIX_ERR in IDL), Sereno 16 (LIRA in R), Okabe
(HIBRECS in Python; Akino+22 HSC+XXL)

Posterior probability: P (0|, y) o< P(x.,y|0)P(0)

N oo o o
H/ an/ dDY.n/ AZ v p(Tr, Yn| X, Yo )p( X0, Yo |Z0,0)p(Z,|0)

p(.ry|9): N oo o0 oo oo oo oo
I1 f dijo.n f dz, / Py, / dX f Py, / A7 (2, Yn| X Yo )p (X, Yoo | Zn, 0)p( Zn|0)
n Yth,0,n — 00 J —0oC J —oo — 00 J —oo

Z =1n MA true Observable vs. true-mass relations:

X =InMawr, | X=oxiz+8xzZ £0xz (ax)z ~0,8x1z ~ 1L ox)z ~0.2)

B Y =ayiz + Byiz Z Loyz M,y as a scattered, weakly
Y =In0Ox biased proxy for M

true

O: Baryonic cluster property (e.g., L, Ty, Mgas, Y,,)



Key ingredients for Bayesian population modeling

* Probabilistic model for the parent population: P(Z2)
— Intrinsic parent distribution in “true” halo mass (Z=InM,,.)

 Modeled by the halo mass function n(M,z) and survey selection function
* Or approximated by a time-evolving Gaussian mixture model (Sereno 16)
e Conditional probability for mass proxies: P(X,Y|Z2)
WL mass: X=axz+0xzZtoxiz (axiz~0,0xz~ 1 0xz~02)
Baryonic properties Y = ayiz + Byviz Z + vz InE(2)/E(zpivet)] £ 0y |2
— Selection/statistical effects (e.g., Malmquist bias, Eddington bias)

and mass modeling bias can be statistically accounted for
- Joint multivariate modeling of intrinsic scatter covariance of (X,Y)

e Conditional probability for observed proxies: P(x,y|X,Y)

— Accounting for the impact of large measurement scatter (e.g.,
regression dilution effect on the slope parameter)



Mass modeling bias a
BAHAMS DM-only simulation

1013 1014

s a function of M

true

WL analysis of BAHAMAS

1015

1.1 N

0.9

mock datasets (Umetsu+20):

din(y.)/din(Myg0) ~ 1
(Oguri & Takada 11)

,H, Umetsu+20 HSC-XXL
Akino+22 HSC-XXL
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* For M, >2eldM
is essentially zero.

* Atgroup scales, M,,, at fixed
M. .. is underestimated.

/h, bias

sun

true

Mass modeling bias can be
statistically corrected for in a
forward-modeling manner

1013 ' 1614
Mi00 [Mg)]

True M5y, of N-body CDM halos

107 See Giocoli+23 (arXiv:2302.00687)
for mass bias expected in Euclid WL



One-step Bayesian population modeling
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One-step Bayesian population modeling
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Simulation-based
Bayesian Inference
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Simulation-based inference: ABC and DELFI

Bayesian inference requires that the likelihood of data given a
model is known. In general, Gaussian likelihoods are assumed.

This Gaussian assumption may not be valid because of

 Complex data reduction and measurement processes (e.g.,
filtering, masking, data compression: catalog creation)

* Non-gaussian nature of galaxy clusters (non-gaussian signals)

Likelihood-free methods use forward simulations to bypass the
need for an evaluation of the likelihood. These methods
sample the model prior space and “compare” observational vs.
simulated data summaries to derive the posterior distribution.

We explore 2 complementary methods to develop a likelihood-

free framework for cluster cosmology and WL mass calibration:
Approximate Bayesian Computation (ABC) Tam, KU,
Density-Estimation Likelihood-Free Inference (DELFI) Amara 22



Likelihood vs. simulation-based approaches

* Gaussian-likelihood inference
— Gaussian likelihoods assumed a priori
— Covariance matrices need to be well characterized
— Exact posterior distribution
— Fast

* Likelihood-free (simulation based) inference

— Can incorporate complex physical processes and
instrumentation effects in forward simulations

— Cope with intractable likelihood functions
— Approximate posterior distribution
— Computationally expensive!



Cosmology (2, 03)

Halo mass function

N

Schematics of forward simulator
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NFW clusters

Scaling relations and

Cluster halo model + intrinsic scatter

_/

——

Survey selection function

Tracer: X-ray

Survey: Q = 50 deg?, eROSITA-like

Creation of synthetic clusters

NFW clusters with (Ms,, ) +

scattered observable

Observable selected clusters | including Edington bias

|

Noisy tangential shear profiles

Creation of.synthetic AX(R) for individual NFW
weak-lensing data

clusters (Subaru HSC survey)

|

Simulated number counts Data summaries to be
+ stacked shear profile compared with observations




(g% )(R)

Synthetic survey data created with a fiducial
model Q_ = 0.286, ;= 0.82

Data summary vector #1

(g+)(R)
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Tam, KU, Amara 22
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Predicted data summaries for a given cosmology
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Tam, KU, Amara 22



Rejection based ABC-PMC

Limitation of ABC:

To have 1000 accepted samples, 1st

\J

4

T :  “Small acceptance rates and low
First iteration /=0 : + |Subsequent iterations t=1to 7| |  efficie ncy”
! . As the iteration proceeds and € >
Draw parameters (p) from i Draw (p*) from the . zero, more realizations are rejected
prior P(p) : previous iteration (pr.s, We.1)

Use simulator F(Qn. 05, A) Perturb (p*) to (p**) by iteration step with acceptance rate ~
to generate a data vector » : adding Gaussian scatter 60%, generate N = 1000/0.6 ~ 1700
(g+)(Rlp), AN(zIp)) ' l realizations; Last iteration step with

Use simulator F(Qm, 05, 4)| @ acceptance rate of ~0.5%, generate N
~2 X 1075 realizations.

l

Accept samples with
di< €19 and da< €29

to generate a data vector
({g+XRIp**), AN(zlp**))

Acceptance rate < 0.5%

: Accept samples with
Calculate the weight w

N E di< €1t and d>< €2 ' . E :
] L] \d 1

+ | Output the accepted parameters
from the last iteration

v

Calculate the weight

.................................

Iteration until the stopping criterion is satisfied



PYDELFI
(Density-Estimation Likelihood-Free Inference)

Slmulator
Posterior
Neural Network Sl
Sequential Neural Likelihood (SNL)

Prlor

(0, %)

Generate new sims

p(0|x,) x p(X? 10)p(0)

Learn the likelihood by training neural
density estimators g4(x|8)on (9,,x,)




Cosmological inference with ABC-PMC and PYDELFI

= 400 gals/arcmin?: = nearly noise-free (cosmic-variance limited)
= 20 gals/arcmin?: deep ground-based survey

ABC: O(10°) simulations DELFI: O(10°) simulations

Ng
Ng

ng = 400 gals/arcmin? ng = 400 gals/arcmin?

— ted rl
ng =20 gals/arcmin ng = 20 gals/arcmin?

Tam, KU,
Amara 22
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Posterior constraints on Sy = 4(€2,./0.3)°3

= 400 gals/arcmin?: = nearly noise-free (cosmic-variance limited)
= 20 gals/arcmin?: deep ground-based survey

ABC: O(10°) simulations DELFI: O(10°) simulations

Ng
Ng

2

ng = 400 gals/arcmin n, = 400 gals/arcmin?

ny = 20 gals/arcmin? ng = 20 gals/arcmin?

| S,=0.836 £ 0.032

' S5=0.810 £ 0.019

(;-"'b (:.?9 (ﬁ?ﬁ -::,?? Q"."*b Q‘?? th}) Q’@
Ss Ss Tam, KU, Amara 22
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Simulation-based inference with PYDELFI:
Application to HSC-XXL [preliminary]

Subaru HSC-XMM field
and XXL-N

Stacked tangential shear profiles
AX(R) using 3 blinded HSC S19A
shape catalogs

Tam, KU+ HSC-XXL (in prep.)

XXL DR2 catalog and
DR2 selection function:
N = 98 spec-confirmed
C1 clusters in XXL-N (25
deg?) from Garrel+22

‘ ® 519 dempz mO

‘ . ¢ 519 dempz ml
¢ 519 dempz m?2
8 _dempz_




o wrll Schematics of forward simulator

[ NFW or triaxial clusters

Scaling relations and

1 + |. . )
Halo mass function | + | Cluster halo model intrinsic covariance

N\ _/
——

Survey selection function

Tracer: X-ray
Survey: QQ = 25 deg?, XXL-N

NFW clusters with (Mg, 2) +
scattered (Csqq, My, Ly, Ty, 1)

Creation of synthetic clusters

Observable selected clusters including Edington bias

: l . Noisy tangential shear profiles
Creation of synthetic AZ(R) for individual NFW

weak-lensing data clusters (Subaru HSC survey)

|

Simulated number counts Data summaries to be
+ stacked shear profile compared with observations




Data summary vectors
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XXL selection function
and simulated NFW clusters

‘ : realization of NFW clusters in CR-0. space before X-ray selection

104

Oc [arcsec]

[
i
=t

Count Rate [s7]



Stacked AX(R) profile from
synthetic Subaru-HSC survey data

NFW clusters are assigned with In(M,,,) = In(M,,,.) £ 20%
In addition, shape noise is added to individual AX(R) profiles

14 |
10 1 L —— Mock Data

Fiducial cosmology:
S Q,.=0.28, 0,=0.82

A [hM g /Mpc?]

"1 at a fixed model

4x10-!  6x10°1 100 2 x 10°
R[Mpc/h] Tam, Umetsu+ (in prep)
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Simulation-based cosmological inference from
synthetic XXL-HSC observations

—e— training loss
«— walidation loss

negative log loss, —InU
[ = (%) o ~l o w

1000 2000 3000 4000 5000 6000 7000
number of simulations, Ngime

Fiducial cosmology:
Q,=0.28, 043=0.82

Tam, Umetsu+ (in prep)



Summary

Bayesian population modeling of multi-wavelength cluster

surveys provides a flexible approach for cluster cosmology.
— Two-step WL mass calibration in M, domain (Umetsu+20: XXL-HSC)
— One-step WL mass calibration in g,(R) domain (Chiu+21: eFEDS-HSC)

Recent results from joint X-ray + WL surveys show multi-variate
mass scaling relations on group/cluster scales that are consistent
with self-similar predictions (Umetsu+20; Sereno+20; Chiu+22).

Likelihood-free cosmological inference using forward simulations
(ABC, DELFI) will allow for even more flexible and accurate
modeling of all physical, observational, and statistical effects
(Tam, Umetsu, & Amara+22).
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