A Roadmap for Cluster Cosmology

Toward Precision Cosmology & Astrophysics in the Era of Multi-Wavelength Cosmological Surveys

Daisuke Nagai

On behalf of the BP collaboration Yale University

Cluster Cosmology Workshop @ Trieste July 4, 2023

A New Era of Multi-Wavelength Cluster Surveys

Cosmic Visions 2016 Report from DOE:

"The number of massive galaxy clusters could emerge as the most powerful cosmological probe *if* the masses of the clusters can be accurately measured." **Understanding Cluster Astrophysics is the Key!**

Cluster Cosmology in the Stage IV Era

Galaxy Clusters are potentially powerful cosmological probes Systematics, Sysmatics, Syatematics!

Coordinated Cluster Gasmology Concept Probes o (1) MCthods Stadynamics photo-Z - N(Z): Mass + (Selection + cls. finding) optimal filtering vs. shear peak (1) MCthods Stadynamics photo-Z - N(Z): Mass + (Selection + cls. finding) optimal filtering vs. shear peak (DES) - galaxy dustening - pow, spec: duster & cluster 2 asmo. dependent? 3 leax - groups - protectusters (ZZ2/Unviniazed, def) Simple Story (2) resurements -multiwould anth smersies - Voids - theory: index of reliance of the contents of 10->103 ->105 SPT/ACT = 50- SPT/ACT = 50- SE Sociolosy/Politics Brups@high-2 DES - DESI/DES/Euclid - data coness Astrophysics M.F. (halo finders) -mass modeling Cosmolosy Rubin/Roman - challenges within collaborations. time for dusters? Connection by Holistic approach: challenge for propose theory & abs Step 2: Joint modeling of 2x3 + clusters Step 1 252+Kroy + CMB/aptical (2) (3) Challenges. - beyond ACDIM ! parametrication - define dullenges & pipelines -Mass modeling challenge (Physical properties: M(r.Z) Tension/Inconsistency (1) Minut = 10Ma, Z=0-2 No Folds

MIAPP workshop, 2022

Coordinated Cluster Gasmology Concept Probes of LSS Methods Salarmanics photo-Z Methods Salarmanics photo-Z - N(Z): Mass + (Selection + cls. finding) optimal filtering vs shear peak (DES) - galaxy dustening - pace. spec : duster & cluster 2 asmo. dependent? 3 lear - groups - provoclusters (ZZ2/unvinicized, dof) Simple Story: * cluster 5 #3 (2) resurements -multiwavelough synergies - Voids - theory: Mass bias? (field us clusters) - obs: photo 2: shear (clibration, CMB toptical lens) - theory: Mass bias? (csp-11) (221) - barrie effects - centering $|0^{2} \rightarrow |0^{3} \rightarrow |0^{5}$ vell-resolved -SPT/ACT-SD-> SE Suciolosy/Politics Brups@high-2 DES - DESI/DES/Euclid - darter arress Astrophysics M.F. (halo finders) -mass modeling Cosmology Rubin/Roman - challenges within collaborations. the for dusters? Connection the for dusters? theory & also Step 2: Step 1 252+ Kroy + CHE/optical CH (3) Challenges. - beyond ACDIM | parametrication Holistic appwach: - define dullenges & pipelines -Juint modeling of 2x3 + clusters -Mass modeling challenge (Hysical properties: Marz) Tension/Incresistency

MIAPP workshop, 2022

Coordinated Cluster Casmology Concept (1) Methods Standing + SZ + aptro CMELOPT lens ESZ + Optical + X-my + WL + SL (high-z) - N(Z): mass + (Selection + cls. finding) Ended (no-Z) optimal filtering vs shear peak - poco, spec : duster & cluster (como. dependent? (to-do) (DES) groups protoclusters (ZZ2/Unviniazed, def) Simple Story: resurements (2)-multiwould ust smersies $|_{\mathcal{O}_{2}} \rightarrow |_{\mathcal{O}_{2}} \rightarrow |_{\mathcal{O}_{2}}$ - obs: photo & shear calibration, CMB toptical lens - there? mass blas? - there? mass blas? barrowic effects grups@high-z DESI/DES/Fendid (mp. hold (251) -centering M.F. (halo finders) -mass modeling Astrophysics Cosmolosy Rubin/Roman that timers) fine for dusters? Connection by Holistic approach: challenge for primps theory & obst Step 2: Joint modeling of 2x3 + clustors) Step 1 LSZ + Kroy + CraBlophical (1) (3) Challenges. - define dullenges & pipelines - Mass modeling challenge (Physical properties: M(r.Z) Tension Inconsistency =10⁽³Mw.Z=0-1

Simple Story -multiwovelagh smergies 13 . -SPT/ACT->50-> SA hand/15M well resolved FEROSTIA groups@high-z DES - DESI/PES/Endid Astrophysics Cosmolosy Rubin/Roman ESE + X-roy + CIAB/optice (CL) Step Holistic approach: 2: - Joint modeling of 2x3 + clusters Tension Inconsistency

Opportunities, Challenges & New Frontiers Computational + Analytical + Data-Driven Modeling

Opportunities

Maximize the scientific returns of multi-wavelength surveys by using non-linear structure formation physics (e.g., clusters, lensing, galaxy clustering)

Challenges:

- Big Data Challenge
- Multi-scale, Multi-physics Problem
- DM Halo-Galaxy-Gas Connection
- Roles of Hydro Sim, SAMs, ML for cosmo/astro inference

New Frontiers

 Computational Frontier: use hydrodynamical cosmological simulations of galaxy cluster formation to gain physical insights into cluster astrophysics
Modeling Frontier: Develop a physically-motivated, computationally efficient model for modeling multi-properties of galaxies, clusters, and cosmic web
Machine Learning Frontier: use machine learning techniques to detect and exploit small signals in noisy and complex data

Computational Frontier

use hydrodynamical cosmological simulations of galaxy cluster formation to gain physical insights into cluster astrophysics

The Physics of Galaxy Cluster Outskirts vs. Cores Lessons from Hydro Simulations

Cluster Outskirts

Gas Accretion & Non-equilibrium phenomena

- 1. Non-thermal pressure due to gas motions
- 2. DM vs. Gas Shapes
- 3. Splashback vs. Shock Radii

4. Non-equilibrium electrons

- 5. Gas clumping/inhomogeneities
- 6. Filamentary gas streams

Walker et al. 2019 for a recent review

Cluster Cores

Heating, Cooling & Plasma physics

- 1. AGN feedback (Mechanical/CR heating)
- 2. Dynamical Heating, Gas sloshing
- 3. Thermal Conduction, Magnetic Field, He sedimentation

Outstanding Challenge - especially critical for X-ray surveys (e.g., eROSITA)

Key Parameters Mass & MAH

Tractable

Non-thermal Pressure Analytical Model vs. Hydro Simulations

Shi & Komatsu 2014 (analytical model)

Analytic model can match the results of hydrodynamical simulations remarkably well

Halo & Gas Shape and Formation History

- DM halo & gas shapes depend on its formation history: early-forming/higher concentration halos are more spherical
- Systematic scatter in observable scaling relation driven by halo formation history

DM and Gas Halo Shapes

Calibrate relations between DM halo shape & gas shape using ML methods with Illustris-TNG300 hydro simulations (Lau, Nagai, et al. in prep)

Gas shape is triaxial, but more spherical than DM

Splashback vs. Accretion Shock Radii

Accretion shock radius is ~2 times larger than the Splashback radius, making the hot gas extend beyond the splashback radius.

Electron-Proton Equilibration in Cluster Outskirts

In the outskirts of galaxy clusters, the collision rate of electrons and protons becomes longer than the age of the universe.

AGN feedback in Groups

AGN feedback may cause a break in the Y-M relation on low-mass groups, by lowering gas fraction via stochastic energy injection by jets and winds

New Frontier: Astrophysics & Cosmology with CGM

Galaxy Clusters

Most baryons are in gaseous form *across all halo masses*. Currentsurveys are probing gas in galaxies and galaxy clusters.

New Frontier: CGM as a Laboratory for Galaxy Formation PHysics

Sensitivity to Gas Properties Near r200

Cosmology and Astrophysics with Machine Learning Simulations (CAMELS)

A series of CAMELS papers (including public data release in 2022)

A Data-Driven Approach to the Multi-Wavelength Circumgalactic Revolution

Modeling Frontier

develop a physically-motivated, computationally efficient model for modeling multi-properties of galaxies, clusters, and cosmic web

Baryon Pasting Project

Goals

Maximize the scientific returns of multiwavelength surveys of galaxy clusters and LSS via Cross-Survey Cross-Correlation Cosmology (CSC3)

Challenges

- Halo-Gas Connection: modeling of SZ and X-ray profiles of ICM and CGM
- Baryonification: constraining baryonic effects with WL x SZ cross-correlations

Solution

Develop a **simple, physically-motivated computationally efficient method** for modeling multi-properties of clusters, groups, and galaxies

BP Gas Model: 2005-2017

A physically-motivated parameterized model of gas in DM halos:

Polytropic equation of state in cluster cores and outskirts (Ostriker+05; Shaw+10, Flender+17)

$$P_{tot} = P_{th} + P_{nt} \propto \rho_g^{\Gamma} \qquad \Gamma(r, z) = \begin{cases} 1.2 & (r/r_{500} > 0.2) \\ \tilde{\Gamma}(1+z)^{\gamma} & (\text{otherwise}) \end{cases}$$

Star formation: stellar mass fraction (e.g., Giodini+09, Leauthaud+11, Budzynski+13)

$$\frac{M_*}{M_{500}} = f_* \left(\frac{M_{500}}{3 \times 10^{14} \, M_{\odot}}\right)^{-S_*}$$

Dynamical heating from DM and energy feedback from AGN and SNe

$$E_{g,f} = E_{g,i} + \epsilon_{\rm DM} |E_{\rm DM}| + \epsilon_f M_* c^2 + \Delta E_p$$

Model of merger-induced non-thermal pressure fraction (Nelson+14; see also Lau+09,13, Green+20)

$$\frac{P_{\text{rand}}}{P_{\text{total}}}(r) = 1 - A \left\{ 1 + \exp\left[-\left(\frac{r/r_{200m}}{B}\right)^{\gamma} \right] \right\}_{-1}$$

BP Modeling of tSZ Power Spectrum

BP Modeling of X-ray Clusters & Groups

McDonald+13,17: X-ray measurements of **gas density profiles**

Vikhlinin+06, Sun+09, Lovisari+15: measurements of the **relation between mass of gas and total mass** (DM+gas+stars)

Baryon Pasting gas model describes X-ray observations (density profiles and gas mass) well (Flender, Nagai, McDonald+17)

Better than 12% constraints on the T profile!

Baryon Pasting Algorithm Halo vs. Particle-based methods

Time / map HP: 1.5 min PP: 69 min

for 5x10⁵ halos using 224 cores

Osato & Nagai 2023 (astro-ph/2201.02632)

All-Sky BP SZ Maps

108 full-sky lightcone simulations of CMB lensing (Takahashi+17) and tSZ (Osato & Nagai+22) maps

Next Step: Baryonification + tSZ x WL cross-correlation

Cosmology & Astrophysics with Cross-Survey Cross-Correlation Cosmology (CSC3)

Auto- and cross-power spectra measurements are sensitive to the lensing bias, non-thermal pressure, feedback and gas clumping.

Shirasaki, Lau & Nagai (2020)

Cosmology & Astrophysics with Cross-Survey Cross-Correlation Cosmology (CSC3)

Microwave+Optical+X-ray

Measuring the **angular power spectra** in X-ray (eROSITA, microwave (CMB-S4), and optical (Rubin) lead to improved constraints on cosmology and astrophysics

Shirasaki, Lau & Nagai (2020)

X-ray power spectrum of eFEDS field

• Large-scales ($\ell < 2000, \vartheta > 0.2^{\circ}$) -Consistent with ROSAT and the *Chandra* calibrated BP model.

• Small-scales ($\ell > 2000, \vartheta < 0.2^{\circ}$) -Large differences between BP model and *Chandra*/COSMOS

 Expected eROSITA All Sky Survey (eRASS1) cosmological constraint using only large angular scales (*l* < 2000) - marginalized over astrophysics parameters:

 $\frac{\Delta\Omega_M/\Omega_M \sim 5\%}{\Delta\sigma_8/\sigma_8 \sim 4\%}$

Lau, Bogdan, Chadayammuri, Nagai, Kraft, Cappelluti 2023

Cross-Correlation: tSZ x Lensing

Cross-correlation of Planck and RCSLens data shows tensions with the Planck tSZ power spectrum result, indicating ICM physics in low-mass clusters at z>0.2 and/or possible systematics in SZ/lensing measurements.

e.g., van Waerbeke+14, Hill & Spergel+14, Hojjati+17, Makiya+18, Osato+20, Pandey+21

Towards Forward-Modeling Covariances Correlated Structures of Dark Matter, Gas & Stellar Profiles

-2 ՝ -1

-0.5

 $\log(r/R_{200})$

0.5

- Correlations between scatter of DM, stars, and gas density profiles in Illustris-TNG300 simulations is scale dependent and can potentially be used as a probe of astrophysics.
- These covariance matrices are a source of systematics in cluster mass calibration.

Farahi, Nagai, Anbajagane, 2022

Baryon Pasted (BP) Multi-wavelength Maps

- We generate realistic maps in X-ray and microwave, using the cosmoDC2 halo lightcone generated from large-scale *N*-body simulations
- Explore impact of astrophysics by varying parameters in the gas model

BP x cosmoDC2 maps (Zoomed-in)

With Baryon Pasting we can:

- explore astrophysical systematics by varying parameters in the gas model forward-model halo & gas shape, projection effects, instrumental responses with BP-generated maps

BP DESC Project

Goal : produce and analyse X-ray and SZ sky-maps corresponding to DESC sims with galaxy catalogs (redMAPPER) with cosmoDC2, and eventually SkySim5000, lightcone simulations

Science Applications: forward-modeling cluster scaling relations, cluster finders, selection functions, multiwavelength cross-correlations

Machine Learning Frontier

use machine learning technique to detect and exploit small signals in noisy and complex data

Precision Cluster Cosmology with Interpretable Machine Learning

Mock X-ray images of 329 clusters with $M_{500c} \ge 10^{13.6}$ Msun, augmented with many viewing angles of each cluster from the Illustris TNG-300 simulation

The ML-based X-ray cluster mass has a small scatter of 8-12%, which is a significant improvement from 15-18% scatter based on the core-excised X-ray luminosity - the current market standard.

Beyond the Black Box: Interpreting the model with Deep Dream

Ask: What changes in the input cluster image will result in a mass change of this image?

Good News: CNN has learned to excise core, which are known to have large scatter with mass and more!

Emulating SZ Images using Auto-Encoder

Tibor Rothschild

Question: Original vs. Generated Images?

Which images are generated by auto-encoders?

Answers: Original vs. Generate Images?

Generated images by the auto-encoder

Original images from hydro sims

Reproducing the Scatter in tSZ scaling relation

Reproducing Morphological Properties

Reproducing Morphological Properties

Baryon Pasting Project:

Precision Cosmology & Astrophysics in the Era of Multi-Wavelength Surveys

eRosita

SPT-3G

AdvACT

Computer Simulation

Opportunities

Maximize the scientific returns of multi-wavelength surveys (e.g., galaxies, clusters, cosmic web)

Challenges

- DM Halo-Gas-Galaxy Connection
- Multi-scale, Multi-physics Problem
- **Big Data Challenge**
- Roles of Hydro Sim, SAMs, ML for cosmo/astro inference

New Frontiers

1. Computational Frontier: hydro. cosmo.

simulations

- 2. Machine Learning Frontier: *machine learning*
- 3. Modeling Frontier: a physically-motivated,

computationally efficient model

A Roadmap for Cluster Cosmology

	Probes of LSS
3 lea x	-galaxy dustants. - $(N)_{-}$
Chair	* clasters

- dorter arress

leg. C

- challenges within collaborations. - beyond ACDIM ! parametrization

MIAPP workshop, 2022

Coordinated Cluster Gasmology Concept (1) MCthods Stadynamics photo-Z - N(Z): Mass + (Selection + cls. finding) optimal filtering vs. shear peak (DES) - poro, spec : duster & cluster (asmo. dependent ? ghoups provodusters (ZZ2/ unvinicized, def) Simple Story resurements (2)-multiwavelough smergies - theory in the flects - centerned $|0^2 \rightarrow |0^3 \rightarrow |0^5$ NTON STANDARD -SPT/ACT - SD-> SE Brups@high-2 DES - DESI/DES/Euclid Astrophysics Osmolosy Rubin/Roman M.F. (halo findlers) -mass modeling the for dusters? Connection by Holistic approach: fine for dusters? Connection by Holistic approach: challenge for process theory & abs Step 2: - Joint modeling of 2x3 + clusters Step 1 the throw + CMB/optical ((3) Challenges. - define dullerges & pipelines -Mass modeling challenge (Physical properties: M(r.Z) Tension/Incresistency (1) Minut = 10M0, Z=0-2 No FOMS