Towards precision and accuracy in Galaxy Clusters simulations

Tiago Castro

In collaboration with: Alessandra Fumagalli, Raul Angulo, Sebastian Bocquet, Stefano Borgani, Klaus Dolag, Alex Saro, and others.

Cluster Cosmology

The HMF

The differential halo mass function gives the number density of halos of mass M at redshift z:

- Press–Schechter formalism:
 - Collapsed objects were in the past over densities above a threshold δc (Spherical Collapse prediction);
 - The abundance of Halos of mass M is proportional to the probability of fluctuations higher than δc on the Gaussian smoothed linear density field;
 - PS mass function offers a qualitative explanation to the observed halo abundances;
 - However, for a precise estimation, more complex mass functions (calibrated with N-body simulations) is required.

The HMF: calibration?

The formation of structures in the Universe is deep-seated in the non-linear regime. Assessing this regime is only possible with expensive cosmological simulations:

$$\frac{\mathrm{d}\,n(M,z)}{\mathrm{d}\,M}\,\mathrm{d}\,M = \frac{\rho_{\mathrm{m}}}{M}\,f(\nu)\,\mathrm{d}\,\nu\,,$$

$$f_{\rm PS}(\nu) = \sqrt{\frac{2}{\pi}\nu e^{\frac{-\nu^2}{2}}}$$

 $f_2(n_{
m eff})$

 a_{eff}

3

$$f_{\rm ST}(\nu) = A \sqrt{\frac{2a}{\pi}} \nu e^{(-a\nu^2/2)} (1 + (a\nu^2)^{-p})$$

The HMF: Numerical/Theoretical systematics

- Despite the choice for describing the HMF, cosmological simulations are vital for both approaches;
- Assessing the robustness of the simulations predictions is not an easy task:
 - For instance, tweaking code parameters and searching for convergence can result in inaccurate result.

Low accuracy and low precision

Low accuracy and high precision

The HMF: Numerical/Theoretical systematics

• Designing an accurate and precise set of simulations for Cluster Cosmology:

Set	$L_{\rm box}~(h^{-1}~{\rm Mpc})$	Np	Background	$P_{\text{lin.}}(k)$	Initial Conditions			Grav. Solver	
	1999) 8 (P. 1997)				Code	LPT Order	z		
TEASE	500	256 ³ 512 ³ 1024 ³	<i>C</i> 0	ACDM	MUSIC	Zel.	99	Tree-PM, FMM-PM, FMM, P ³ M, AMF	
		4×160^{3} 4×320^{3} 4×640^{3} 4×1280^{3}			monofonIC	3LPT	24	Tree-PM, FMM-PM, FMM, P ³ M	
AETIOLOGY	1000	1024 ³	EdS	Power-law ACDM (C0)	GADGET-4	2LPT	99	FMM-PM	
			<i>C</i> 0	Power-law ACDM					
PICCOLO	2000	4×1280^3	<i>C</i> 0 – <i>C</i> 8	ACDM	monofonIC	3LPT	24	Tree-PM	

The HMF: Numerical/Theoretical systematics

• Assessing the results robustness through code comparison:

The HMF: Numerical/Theoretical systematics

Sensitivity of the HMF on initial conditions:

- Due to the break of the commutative property due to limited precision, the HMF is sensitive
- to small perturbations on the initial conditions.

import numpy as np

```
# Random sample size
NMAX = 10000000
# Creating an array with random variables
# following a normal distribution
arr = np.random.randn(NMAX)
# Permutantion indexes
idxs = np.random.permutation(NMAX)
# Comparing the mean of the original array
# and the permuted one
print(arr.mean()/arr[idxs].mean())
```

The HMF: Numerical/Theoretical systematics

• Sensitivity of the HMF on initial conditions:

 Due to the break of the commutative property due to limited precision, the HMF is sensitive to small perturbations on the initial conditions.

The HMF: Numerical/Theoretical systematics

- Sensitivity of the HMF on initial conditions:
 - Due to the break of the commutative property due to limited precision, the HMF is sensitive to small
 - perturbations on the initial conditions;
 - This introduces a further scatter on the binned statistics depending on the bin width.

The HMF: Numerical/Theoretical systematics

Impact of the simulated volume:

• The simulated volume introduces further scatter to the HMF due to the lack of super-sample modes and the sample variance of the independent modes.

The HMF: Numerical/Theoretical systematics

- Impact of the halo definition:
 - Centering;
 - Boundedness condition;
 - Hierarchy conditions.

101

5_m + 1

10-1

The HMF: Numerical/Theoretical systematics

- Impact of the halo definition:
 - Centering;
 - Boundedness condition;
 - Hierarchy conditions.

We have adopted a bottom-up approach to develop our HMF model:

- Selecting the fitting-function to be calibrated using scale-free simulations;
- Modelling the evolution of the parameters as a function of the matter power spectrum shape;
- Using simulations with composed initial conditions to discriminate between the impact of the background evolution and the matter power spectrum shape.

$$f_{\rm ST}(\nu) = A \sqrt{\frac{2a}{\pi}} \nu e^{(-a\nu^2/2)} (1 + (a\nu^2)^{-p}).$$

$$f(\nu) = f_{\rm ST}(\nu)(\nu\sqrt{a})^{q-1}$$

We have adopted a bottom-up approach to develop our HMF model:

- Selecting the fitting-function to be calibrated using scale-free simulations;
- Modelling the evolution of the parameters as a function of the matter power spectrum shape;
- Using simulations with composite initial conditions to discriminate between the impact of the background evolution and the matter power spectrum shape.

- We have adopted a bottom-up approach to develop our HMF model:
 - Selecting the fitting-function to be calibrated using scale-free simulations;
 - Modelling the evolution of the parameters as a function of the matter power spectrum shape;
 - Using simulations with composed initial conditions to discriminate between the impact of the background evolution and the matter power spectrum shape.

18.

• We have adopted a bottom-up approach to develop our HMF model:

- Selecting the fitting-function to be calibrated using scale-free simulations;
- Modelling the evolution of the parameters as a function of the matter power spectrum shape;
 - Using simulations with composed initial conditions to discriminate between the impact of the background evolution and the matter power spectrum shape.

$$f_{
m ST}(
u) = A \sqrt{rac{2a}{\pi}}
u \mathrm{e}^{(-a
u^2/2)} (1 + (a
u^2)^{-p}) \, .$$

 $f(
u) = f_{
m ST}(
u) (
u \sqrt{a})^{q-1} \, .$

$$q = q_R \times \Omega_{\rm m}(z)^{q_z}$$

$$q_R = q_1 + q_2 \times \left(\frac{\mathrm{d}\ln\sigma}{\mathrm{d}\ln R} + 0.5\right)$$

$$p = p_1 + p_2 \times \left(\frac{\mathrm{d}\ln\sigma}{\mathrm{d}\ln R} + 0.5\right)$$

$$a = a_R \times \Omega_{\rm m}(z)^{a_z}$$

$$a_R = a_1 + a_2 \times \left(\frac{\mathrm{d}\ln\sigma}{\mathrm{d}\ln R} + 0.6125\right)$$

• Calibration accuracy:

The HMF: Peak-background split bias

• Bias prediction:

The HMF: Peak-background split bias

Modelling the PBS correction:

PICCOLO Cosmologie: DES + SPT

The halo linear bias:

Magneticum takes into account:

- Cooling, star formation, winds (Springel & Hernquist 2003);
- Metals, stellar population and chemical enrichment;
- SN-Ia, SN-II, AGB (Tornatore et al. 2003/2006);
- BH and AGN feedback (Springel & Di Matteo 2006, Fabjan et al. 2010);
- Thermal Conduction (1/20th Spitzer) (Dolag et al. 2004);
- Low viscosity scheme to track turbulence (Dolag et al. 2005);
- Higher order SPH Kernels (Dehnen & Aly 2012);
- Magnetic Fields (passive) (Dolag & Stasyszyn 2009).

• A more consistent picture of AGN feedback:

- Baryons affect the LSS:
 - The net effect is that matched halos has systematically lower masses on hydro than on the DMO;
 - Cluster abundance is suppressed by 5-15%;

- Baryons affect the LSS:
 - The net effect is that matched halos has systematically lower masses on hydro than on the DMO;
 - Cluster abundance is suppressed by 5-15%;

Baryonic feedback impact on halo masses:

Quasi-adiabatic model:

$$M_{\Delta,\text{dmo}} R_{\Delta,\text{dmo}} = M_{\text{vir,hyd}} R_{\text{vir,hyd}}$$
 $M_{\Delta,\text{dmo}} = \frac{1 - f_{\text{b,vir}}}{1 - f_{\text{b,cosmic}}} M_{\text{vir,hyd}}$
 $\Delta = \frac{3 M_{\Delta,\text{dmo}}}{4 \pi R_{\Delta,\text{dmo}}^3 \rho_{\text{c}}},$

"I think nature's imagination is so much greater than man's, she's never going to let us relax." R. Feynman

$$M_{\Delta,\text{dmo}} = \frac{1 - f_{\text{b,vir}} - \delta_f}{1 - f_{\text{b,cosmic}}} M_{\text{vir,hyd}},$$
$$\frac{R_{\Delta,\text{dmo}}}{R_{\text{vir,hyd}}} = 1 + q \left(\frac{1 - f_{\text{b,cosmic}}}{1 - f_{\text{b,vir}} - \delta_f} - 1\right)$$

29.

30-

• Calibrating the deviation from the quasi-adiabatic prediction:

• Stressing the model...

32

• Stressing the model...

33.

• Stressing the model...

34

Theoretical requirements and challenges for future surveys

Theoretical requirements and challenges for future surveys

• Impact of the halo definition (assuming different halo-finders):

Summary statistics	richness-mass relation priors	Analysis	Synthetic catalog	Value
	1 %			1.66 ± 0.01
	3%	VELOCIraptor	ROCKSTAR	0.77 ± 0.01
	5%	(Fixed)		0.65 ± 0.01
	1 %			1.70 ± 0.02
IOI	3 %	SUBFIND	ROCKSTAR	0.84 ± 0.01
	5%	(Fixed)		0.61 ± 0.01
	1 %			0.90 ± 0.02
	3 %	AHF	ROCKSTAR	0.61 ± 0.01
	5%	(Fixed)		0.47 ± 0.00
	1 %	· · · · · · · · · · · · · · · · · · ·	ROCKSTAR	0.04 ± 0.05
	3%	ROCKSTAR		0.06 ± 0.04
ΔFOM	5%	(Marginalized)		-0.01 ± 0.02
FOM	1 %			-0.09 ± 0.05
	3%	VELOCIraptor	VELOCIraptor	0.00 ± 0.03
	5%	(Marginalized)		-0.02 ± 0.03

Theoretical requirements and challenges for future surveys

• Neglecting Baryons:

- Hydro Fit
- DMO Fit
 - DMO Fit + Mass Correction

Conclusions

Conclusions

1. We presented a precise and accurate model for the HMF and HB:

- a. 1% agreement for the range of masses relevant for CC;
- b. Minimal impact on the Cluster Counts FOM;
- c. The model for taking into account the effect of baryonic feedback is robust against the sub-resolution physics;
- d. The accuracy of the baryonification model is sub-dominant to the ignorance on the cluster baryon-fraction relation.
- 2. The impact of the halo-finder choice might bias the cosmological inference:
 - a. The impact is smaller than previously discussed in Salvatti et al. 2021 and Artis et al. 2021;
 - b. Still, it raise awareness that the halo definition is an important systematic and should be better understood.
 - c. The impact of ignoring the baryonic impact more significantly the cosmological inference.
- 3. Halos are not what we are going to observe with future surveys.

Thanks / Grazie / Obrigado!