X-ray cluster selection \& mass calibration

Stefano Ettori
 INAF-OAS / INFN Bologna

Outline (covered by Lorenzo; not covered but potentially relevant):
$>$ Intro: Stage-IV, on the selection, high-z
$>$ Scaling laws: dynamical state, astrophysics at low-M, evolution
$>$ Hydrostatic mass: limits, uncertainties, biases (\& T cross-calib)
> internal structure as complementary proxy (c-M-z; sparcity; fas $)$
> Generalized-SR (Ettori 13, 15); universal ICM profiles (Ettori+23)

Stage-IV

The Dark Energy Task Force (DETF) report [Albrecht+06] classified DE surveys into an approximate sequence: on-going projects, either taking data or soon to be taking data, are Stage II; near-future, intermediate-scale projects are Stage III (DES, KiDS, HSC); and larger-scale, longer-term future projects are designated Stage IV (Euclid; LSST; SKA; JDEM/WFIRST; CMB-S4). More advanced stages are in general expected to deliver tighter dark energy constraints, which the DETF quantified using the $\mathrm{w}_{0}-\mathrm{w}_{\mathrm{a}}$ FoM:

$$
F o M \propto\left(\sigma_{w 0} \sigma_{w a}\right)^{-1}
$$

W.r.t. Stage II, Stage III experiments are expected to deliver a ~ x3-5 in combination; Stage IV experiments should improve the FoM by ~10; these estimates are subject to considerable systematic uncertainties

Stage-IV

DETF (Albrecht+06)

4. The techniques are at different levels of maturity:
a. The BAO technique has only recently been established. It is less affected by astrophysical uncertainties than other techniques.
b. The $\mathbf{C L}$ technique has the statistical potential to exceed the BAO and SN techniques but at present has the largest systematic errors. Its eventual accuracy is currently very difficult to predict and its ultimate utility as a dark energy technique can only be determined through the development of techniques that control systematics due to non-linear astrophysical processes.
c. The $\mathbf{S N}$ technique is at present the most powerful and best proven technique for studying dark energy. If redshifts are determined by multiband photometry, the power of the supernova technique depends critically on the accuracy achieved for photo-z's. (Multiband photometr) measures the intensity of the object in several colors. A redshift determined by multiband photometry is called photometric redshift, or a photo-z.) If spectroscopically measured redshifts are used, the powe of the experiment as reflected in the DETF figure of merit is much better known, with the outcome depending on the uncertainties in supernova evolution and in the astronomical flux calibration.
d. The $\mathbf{W L}$ technique is also an emerging technique. Its eventual accuracy will also be limited by systematic errors that are difficult to predict. If the systematic errors are at or below the level asserted by the proponents, it is likely to be the most powerful individual Stage-IV technique and also the most powerful component in a multi-technique program.

The main challenge for using cluster counts for DE tests is that the mass of a cluster is not directly observable. On the other hand it is this richness in the available observables of a cluster that provides the opportunity to calibrate the selection empirically and the checks against systematic errors in the modeling

- Galaxy Cluster Counting (CL) [Dark-energy Observables: $D^{2}(z) / H(z)$ and $\left.g(z)\right]$
- Strengths: Galaxy-cluster abundances are sensitive to both the expansion and growth histories of the Universe, in this case with extremely strong dependence on the growth factor. There are multiple approaches to cluster detection: the Sunyaev-Zeldovich (SZ) effect, x-ray emission, lensing shear, and of course optical detection of the cluster galaxies. A large SZ cluster survey (SPT) is already funded, and is the only funded project in our Stage III class.
- Weaknesses: While N-body simulations will be able to predict the abundance of clusters vs. mass and vs. lensing shear to high accuracy, the prediction of SZ, x-ray, or galaxy counts is subject to substantial uncertainties in the baryonic physics. Dark-energy constraints are very sensitive to errors in these "mass-observable" relations, which are likely to dominate the error budget. This method is the one for which our forecasts are least reliable, due to this large astrophysical systematic effect.
- Potential Advantages of LST: LST can detect galaxy clusters via the effect of their mass on shear patterns and also via the overdensities of the cluster galaxies themselves. Deep weak-lensing observations would play a key role for calibrating the mass-observable relation for optical (LST) observables as well as SZ and x-ray observables of spatially overlapping SZ or x-ray surveys.
- Potential Advantages of Space Mission: An x-ray cluster survey, of course, requires a space mission. With an optical/NIR-imaging space mission, lensing-selected cluster surveys benefit from in the same way as WL surveys do, by offering lower noise levels for WL mapping due to higher density of resolved background galaxies. We subsume consideration of lensing-selected clusters into our WL category because any cosmic-shear survey is also a cluster survey. A similar statement can be made for optically-selected galaxy clusters.
- Potential Advantages of SKA: None recognized: cluster galaxies tend to be deficient in neutral hydrogen, so cluster detection is not a strength of SKA.
- Steps to Sharpen Forecasts: "Self-calibration" methods can potentially recover much of the information lost to the mass-observable uncertainties, but their efficacy depends critically on the complexity/diversity of cluster baryon evolution. A better understanding of cluster baryonic physics will likely result from the SZ surveys about to commence. Weak-lensing observations of the detected clusters in these surveys may help as well; more generally, intercomparison of all four kinds of observables could constrain many of the uncertain parameters in the mass-observable relations.

X-ray Cluster Surveys (1980 - present)

(Rosati, Borgani \& Norman, ARAA 2002)

Cosmology with GC

What we need to do cosmology with GC:

1. robust cluster catalogs with large z leverage (with well understood purity \& completeness; look for DES, SPT-3G, Advanced ACT- Pol, eROSITA, LSST, WFIRST-AFTA, Euclid)
2. accurate absolute mass calibration (from weak lensing, or when we will understand better the hydrostatic bias)
3. sufficiently low-scatter mass proxy information (mainly from X-ray and SZ follow-up; optical probably too expensive and still affected from large scatter)

From observables to mass

Largest sources of systematic err

1. Absolute $\mathrm{M}_{\text {tot }}$ calibration, i.e. normalization/slope of the scaling relations
2. Relative $\mathrm{M}_{\mathrm{tot}}$ calibration at low/high-z, i.e. evolution of the scaling relations

From X-ray/SZ integrated quantities to mass

Largest sources of systematic err

1. Absolute $\mathrm{M}_{\mathrm{tot}}$ calibration,
i.e. normalization/slope of the scaling relations
2. Relative $\mathrm{M}_{\mathrm{tot}}$ calibration at low/high-z,
i.e. evolution of the scaling relations

Mean statistical err (1 σ)

$\operatorname{Err}(\mathrm{L}) \sim 4 \% \quad \operatorname{Err}(\mathrm{~T}) \sim 7 \% \quad \operatorname{Err}\left(\mathrm{M}_{\mathrm{gas}}\right) \sim 9 \%$
$\operatorname{Err}\left(\mathrm{Y}_{\mathrm{SZ}}\right) \sim 14 \% \quad \operatorname{Err}\left(\mathrm{M}_{\mathrm{HE}}\right) \sim 20 \%$
Systematic ~ Statistical err

Pillepich+18 eROSITA: in 66\% of sky, $\boldsymbol{\sim 9 e 4}$ objects, median(z)~0.35, M>7e13; they can simultaneously constrain cosmology, selection effects, and M - O relation by adopting very broad non-informative priors on the slope, normalization, time-evolution, and scatter of L_{x} M relation. Tightening of the constraints from pessimistic to optimistic scenario: (i) better knowledge of the LM relation ($\sigma_{8} \Omega_{\mathrm{m}}$), (ii) the lower mass threshold (1e13), particularly for the DE sector. NB when group-size objects are included in the analysis +pessimistic priors on the LM are adopted, errors on w_{0} and w_{a} shrink by about an additional 20-30 per cent in comparison to the case when only high-mass objects are included in the analysis.

No groups, no party

\checkmark Excluding low-M systems significantly reduces the cosmological parameter constraints
\checkmark Increasing incompleteness of parent samples in the low-M regime together with a steeper Lx-M relation observed for groups can lead to biased cosmological parameters (lower Ω_{M} and/or σ_{8}; Schellenberger \& Reiprich 17)
\checkmark Galaxy groups often show lower/flatter Sx than clusters (e.g. Ponman+, Sanderson+) \rightarrow less robust than the properties derived for galaxy clusters
\checkmark But they are very common: a factor of $\sim 30 / 210 / 1500$ more objects in the mass range $\mathrm{M}_{500}=10^{13} \mathrm{Msun}$ M 1 than in $\mathrm{M}_{500}>\mathrm{M} 1$, and $\mathrm{M} 1=$ $1 / 2 / 5 \times 10^{14} \mathrm{M} @ z=0$

From Pratt+19, Lovisari+21

T. Liu+22 validate with extensive photonevent simulations based on instrument characteristics, bkg spectrum, and pop of Xray sources the strategy implemented in Brunner+22... NB halo with profiles assigned from a generator trained on a set of observed clusters (Comparat+20), isothermal

| Selection | Number of clusters | $z_{\text {median }}$ | Flux limit $(0.5-2 \mathrm{keV}, 1$ arcmin $)$ | Completeness | Purity |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Full sample | 542 | 0.35 | $10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ | 40% | 80% |
| $\mathcal{L}_{\text {ext }} \geq 12$ | 325 | 0.34 | $1.7 \times 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ | 44% | $>85 \%$ |
| $\mathcal{L}_{\text {ext }} \geq 15$ | 267 | 0.33 | $2 \times 10^{-14} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ | 47% | $>90 \%$ |

A. Liu+2022 (eFEDS)

Figure 8. Redshift distribution of the NORAS II clusters (solid line). This function is compared to that of the REFLEX II sample (dashed line).

Böhringer+: NORAS (860 obj)+RELEX II (910 obj)
From RASS @flux limit of $1.8 \mathrm{e}-12 \mathrm{erg} / \mathrm{s} / \mathrm{cm}^{2}(0.1-2.4 \mathrm{keV})$

MCXC (Piffaretti+11): 1743 entries; MCXC2021 (in prep.)
\rightarrow M2C (X-ray \&SZ) Database: https://www.galaxyclusterdb.eu/m2c/
E. Koulouridis et al.: The X-CLASS survey: A catalogue of 1646 X-ray-selected galaxy clusters up to z~1.5

Fig. 3. X-ray image in the [$0.5-2] \mathrm{keV}$ X-ray band of a 10 ks XMM-Newton observation background-subtracted and their diameter is 26^{\prime}. The circle marks the position of a detected cluster canage (right panel). The images are not ${ }^{-}$ X-CLASS clusters in the public database.

Fig.4. Examples of X-ray selected galaxy clusters in the X-CLASS survey. Top panels: cluster Xclass0561 (ABELL 2050) at
 Left panels: X-ray images and contours. Green cirles (squares) mark detections of extended (point-like) sources as classified by
the XAmin pipeline. Straight lines that cross the image are CCD gaps of the XMM-Newton detector. Right panels: i i-band optical images from PanSTARRS over-ploted with X-ray contours. Red circles mark the member galaxies with available spectroscopic
redshift. In the case of Xclasso561 both X-ray and optical image cover the same sky area, while in the case of Xclass0219 the optical image corresponds to the central region of the X -ray image marked with the black square.

Klein+23: MARDELS catalog of 8,471 X-ray selected galaxy clusters over 25,000 deg; deep, multiband optical imaging data +optical counterpart classification algorithm MCMF +DESI Legacy Survey DR10 catalog +ROSAT All-Sky-Survey source catalog (2RXS) $\rightarrow 90 \%$ pure MARDELS catalog, the largest ICM-selected cluster sample to date

Figure 8. Left: X-ray mass proxy M_{X} versus redshift for the 90% pure MARDELS sample. Highlighted in blue are matches to the MCXC, Planck PSZ2 and the ACT-DR5 cluster catalogs. Right: Redshift distribution of the 90% pure MARDELS sample, as well as for MCXC, Planck PSZ2 and the ACT-DR5. The MARDELS catalog contains more clusters per redshift interval $(d N / d z)$ than ACT-DR5 out to $z \sim 0.4$ and more clusters overall than all three external cluster surveys put together

Detection through cluster outskirts

(Kafer+20, Xu+18): outperform standard method (erbox sliding-box algorithm to detect peaks in the input count images) for extended (>80") sources

Fig. 7. Extended source detection efficiency of our maximally clean (7σ threshold, black contours), our 5σ threshold (brown contour), and the Clerc et al. (2018) threshold (blue contours) in the core radius vs. input flux plain for an equatorial eROSITA survey field of approximately 1 ks exposure.

Fig. 1. Selection criteria for extended sources. The selection is performed in the extension likelihood - extent plane. The red-solid lines define the optimal parameters obtained from simulations to characterize extended sources. Left: simulation results. Gray dots represent simulated AGNs, and blue triangles, false detections. Colored stars represent clusters with different. input fluxes. Right: results from reprocesssing RASS data. Gray dots stand for point-like detections and the star symbols for the cluster candidates. Green and pink stars show the candidates with ident
in the MCXC and PSZ2 catalogs, respectively. The black stars represent the 13 groups of our pilot sample described in Table 3 .

Fig. 8. Maximally clean (7σ) extended source detection efficiency (black contours) in the mass vs. redshift plain for an equatorial eROSITA survey field of approximately 1 ks exposure.

On SZ selection

Figure 7. Completeness for $\mathrm{S} / \mathrm{N}_{2.4}>5$ as a function of redshift, in terms of $M_{500 \mathrm{c}}^{\mathrm{UPP}}$, over the full 13,211 deg^{2} survey footprint. The Tinker et al. (2008) halo mass function and Arnaud et al. (2010) scaling relation are assumed (see Section 2.4). The dashed black contour marks the 90% completeness limit.

Scaling laws \& selection biases

X-ray flux-limited samples suffer from two forms of selection bias, Malmquist bias, where higher luminosity clusters are detectable out to higher redshifts and so occupy a larger survey volume, and Eddington bias, where in the presence of intrinsic/statistical scatter in L for a given M, objects above a flux limit will have above-average luminosities for their mass. Due to the steep slope of the cluster $f(M)$, the Eddington bias is amplified, resulting in a net movement of lower mass objects into a flux-limited sample.

From Giles+17: neglecting selection effects in the sample would lead to a 40\% underestimate in the mass for a given L.
The solid line in this plot is the estimated relation when selection effects are accounted for. Red/blue points represent relaxed/disturbed systems. The green line and shaded area represent the bestfitting relation of Mantz+10 and the corresponding 1σ uncertainty

Scaling laws \& selection biases

Figure 2. $L_{X}-z$ distribution of clusters from various X-ray-selected samples. By design, MACS finds the high-redshift counterparts of the most X-ray luminous (and best-studied) clusters in the local Universe. Note also how MACS selects systems that are typically about 10 times more X-ray luminous, and thus much more massive, than those found in deeper serendipitous cluster surveys such as the EMSS, WARPS or the $400 \mathrm{deg}^{2}$ project. Two subsets of the MACS sample are highlighted: the sample presented here (red squares) and the 12 most distant MACS clusters at $z>0.5$ (red triangles; Ebeling et al. 2007). A $\Lambda \mathrm{CDM}$ cosmology $\left(\Omega_{\mathrm{M}}=0.3, \Lambda=0.7, h_{0}=0.7\right)$ has been assumed.
Ebeling+01: MACS, based on RASS Bright Source Catalogue (BSC; Voges+99)

Fig. 1. X-ray luminosity-redshift distribution of the REFLEX sample (small dots: entire REFLEX sample including clusters with less than 30 cts and $N_{\mathrm{H}}>6 \times 10^{20} \mathrm{~cm}^{-2}$), and the representative subsample (encircled dots) selected from the regions marked by colored boxes. The solid line indicates the survey flux limit. The dashed lines show the distances at which r_{500} is $7,9,10$, and 12 arcmin (from right to left), for given X-ray luminosity, respectively.

Böhringer+07: The representative XMMNewton cluster structure survey (REXCESS) of an X-ray luminosity selected galaxy cluster sample

An XMM-Newton Multi-Year Heritage Program Witnessing the culmination of structure formation in the Universe URL: xmm-heritage.oas.inaf.it

CHEX-MATE (the Cluster HEritage project with XMM-Newton: Mass Assembly and Thermodynamics at the Endpoint of structure formation): 3 Msec over the period 2018-22 to survey homogenously 118 Planck-SZ selected objects (SNR>6.5; z $\in[0.05,0.6] ; \mathrm{M}_{\text {Tier-2 } 2}>7.25 e 14$) comprising an unbiased census of:

- the population of clusters at the most recent time ($\mathrm{z}<0.2$)
- the most massive objects to have formed thus far in the history of the Universe

CHEX-MATE gallery 2021, A\&A, 650, 104

	\bigcirc								
							0	0	
							\cdots		+
									-
		\bigcirc					边		\cdots

X-ray morphology (Campitiello+22 A\&A 665 117)

Distributions of morphological parameters is preferentially log-normal and do not show any bimodality

X-ray morphology (Campitiello+22 A\&A 665 117)

- We compress all morphological info into the parameter M
- 15 (13\%) very relaxed \& 27 (23\%) very disturbed objects
- We confirm that SZ selected sample contains more disturbed systems than X-ray selected ones

The most massive clusters

at high-z

Number of objects with $\mathrm{M}_{500} / \mathrm{M}_{\odot}>5 \mathrm{e} 13$ (solid; >1e14 dashed): 1900 (WMAP9; 5000 using Planck13) are expected at z>2.5 (full sky; 1 per $22 \mathrm{deg}^{2}$; Reiprich+)

Line: evol
Pts: no-evol

Chandra data of high-z clusters

β-model reproduces quite well the surface brightness of these high-z clusters.

A single emission-weighted temperature is measurable.

The central density is obtained by deprojecting the normalization of the thermal model through the best-fit β model.
(from Ettori+04; mostly from RDCS by Rosati+)

Two extreme cases: $\mathbf{S}_{\mathrm{b}} \boldsymbol{\&} \mathbf{T}_{\text {ew }}$

$z=1.26$

$z=1.10$

Evolution in the X-ray scaling laws

Dashed (solid) line: expected (best-fit) relation

Evolution in the X-ray scaling laws

Dashed (solid) line: expected (best-fit) relation

Evolution of the X-ray scaling laws

- No evolution, apart from self-similar expectations, is observed in $\mathbf{M}-\mathbf{T} \& \mathbf{M}_{\text {gas }} \mathbf{T}$ \& L-Y The normalization in $M-T / Y_{\mathrm{x}}$ for nearby systems is lower (by $\sim 20 \%$) than the one predicted from simulations including cooling \& galaxy feedback.
- Negative evolution in L-T: i.e. a slight decrease in L for given T at higher z is observed (when cores are not excised; the entropy at $0.1 R_{200}$ is measured higher in systems at higher redshift)
- eROSITA needs SLs to connect 10^{5} (only 2% with $\mathrm{T} ; \sim 100$ @z>1.5) X-ray detected GCs to their mass
- BTW: let's agree to study it w.r.t. $E z=\mathrm{H}_{\mathrm{z}}$ / H_{0}; it is exactly equal to $(1+\mathrm{z})^{1.5}$ in an EdS universe and proportional to (1+ z) ${ }^{0.6 / 0.9}$ in the redshift range 0.4-1.3 for an assumed $\Lambda C D M$ model with $\Omega_{m}=0.3$

X-ray scaling laws @high-z

- For a given mass, scaling relations in the LCDM predict that the clusters formed at larger redshift are hotter / denser and therefore more luminous in X-rays than their local $z^{\sim} 0$ counterparts.
- Provided that scaling relations remain valid at larger redshifts, X-ray surveys will not miss massive clusters at any redshift, no matter how far they are.
- New-Athena will resolve ICM properties up to $z^{\sim} 2$, detecting the first collapsed structure at $z^{\sim} 2.5$

The Mass of Galaxy Clusters:

 fundamental quantity, but systematically biased with current X-ray/SZ data$$
\begin{gathered}
\frac{G M_{H E}(<r)}{r^{2}}=-\frac{d P_{g}}{d r} \frac{1}{\rho_{g}} \\
\frac{G M_{t o t}(<r)}{r^{2}}=-\frac{d P_{g}}{d r} \frac{1}{\rho_{g}}-\frac{d v}{d t} \\
\ldots=-\frac{d\left(P_{g}+P_{N T}\right)}{d r} \frac{1}{\rho_{g}}=-\frac{d P_{t o t}}{d r} \frac{1}{\rho_{g}} \\
M_{H E} /(1-b)=M_{t o t} \sim T^{3 / 2} \sim M_{g a s} \sim L^{3 / 4} \sim Y^{3 / 5}
\end{gathered}
$$

Hydrostatic bias: (l-b) $=\mathrm{M}_{\mathrm{x}} / \mathrm{M}_{500}$

Planck ESZ sample (120 obj;
Lovisari, Ettori+20)

Piffaretti+08 (X)-
Lau+09 (SZ) Ameglio +09 (X) Meneghetti+10 (X) Sembolini+12 (X) Kay+12 (X) Rasia+12 (X) Battaglia+13 (X) Nelson+14 (SZ)Biffi+16 (X) Shi+16 (SZ) McCarthy+16 (X)Martizzi+16 (SZ) Le Brun+17 (X) Gupta+17 (SZ) Henson+17 (X)Cialone+18 (X) Ruppin+19 (SZ) Pearce+20 (X,SZ) Ansarifard+20 (X,SZ) Barnes+20 (X) This work (X,SZ)

Gianfagna+21

X-COP: XMM +Planck (Eckert+17)

X-COP: ‘universal" profiles

(\& scatter; Ghirardini+19)

$T=P / n$
$K=P / n^{5 / 3}$

M ~ - $r^{2} / n d P / d r$
(see also
Ameglio+07, 09, Shitanishi+18)

X-COP: mass profiles

(Eckert, Ettori, et al. 2022a)

Mass reconstruction in A1795
(i) n_{e} profile reconstructed with the multi-scale method;
(ii) non parametric reconstruction of

to the spectroscopic X-ray measurements and the 3D temperature profile obtained by dividing the SZ pressure by the X-ray
density (projected, spec-w, PSF convolved T)
(iii) mass profiles obtained with different reconstructions (NFW, Einasto, Forward, and NP) \rightarrow https://github.com/domeckert/hydromass

X-COP: mass profiles

(Ettori+19)

X-COP: mass profiles

(Ettori+19)

Table 2. Systematic differences between the forward method ("Forw") and the other mass models described in Sect. 3.1 with respect to the model of reference defined as backward NFW.

M_{i}		B (inter-quartile range) $\%$				
	0.5 Mpc	1 Mpc	1.5 Mpc	R_{500}	R_{200}	
Forw	$+0.6(-1.1 /+3.3)$	$-2.0(-5.9 /+1.4)$	$-4.6(-7.9 /+1.3)$	$-4.7(-10.9 /-0.5)$	$+1.2(-5.4 /+8.1)$	
Forw (no SZ)	$-1.5(-3.4 /+4.1)$	$-1.9(-8.0 /+0.6)$	$-1.3(-5.4 /+4.5)$	$-4.2(-9.0 /+1.8)$	$+1.3(-11.9 /+8.0)$	
EIN	$-0.3(-1.7 /+1.3)$	$-1.7(-6.5 /-0.2)$	$-1.0(-9.7 /+1.5)$	$-0.8(-7.6 /+1.0)$	$-0.8(-10.3 /+4.3)$	
ISO	$+14.1(+11.8 /+21.0)$	$-3.0(-3.5 /+5.4)$	$-13.3(-19.0 /-9.7)$	$-8.2(-13.0 /-5.3)$	$-23.5(-28.7 /-16.5)$	
BUR	$+11.4(+10.4 /+15.1)$	$-3.1(-5.8 /+4.0)$	$-13.7(-19.2 /-8.3)$	$-8.3(-12.9 /-5.2)$	$-20.8(-24.2 /-17.9)$	
HER	$+1.6(+0.9 /+2.1)$	$-0.7(-5.6 /+0.2)$	$-5.5(-11.4 /-2.4)$	$-3.7(-5.3 /-1.9)$	$-9.3(-13.5 /-6.8)$	

Notes. These differences are quoted as the median (1st-3rd quartiles, in brackets) of the quantity $B=\left(M_{i} / \mathrm{NFW}-1\right) \times 100 \%$, where M_{i} is listed in the first column.

X-ray mass: final considerations

Fig. 3: Comparison of the hydrostatic mass computed at fixed radius R_{500}^{Y}, using the different methods, in units of M_{500}^{Y}. There is excellent agreement, with differences of less than 10%, when the radius is enclosed in the radial range covered by the spectroscopic data.

$M_{500}^{Y_{X}}\left[10^{14} M_{\odot}\right]$

$\mathrm{M}_{\text {HE }}$ @z~1; Bartalucci+18

Amodeo+16 Bartalucci+18 Ettori+10, 19
Pointecouteau+05 Vikhlinin+06

X-ray mass: vs Lensing, Caustic

X-ray mass: final considerations

- hydrostatic mass estimates may have systematic biases (Rasia+06, Nagai+07) and is function of R, M, dynamical state ($\mathrm{M}_{\mathrm{hyd}} \sim$ $M_{\text {tot }}$ in CC)
- Done a lot of work on systematics related to the methods (Ettori+10, Bartalucci+18)
- HE holds locally: we need objective methods to characterize the dynamical state \& localize disturbed regions
- $\mathbf{f}_{\text {bar }} \sim \Omega_{b} / \Omega_{m}$ once some depletion is accounted for (if $\mathrm{M}_{\text {hyd }}$ is underestimated, "missing baryons" problem appears -see Ettori 2003)

[^0]
$\mathbf{T}_{\text {spec }} \mathbf{x}$-calibration

A3158 (Whelan+22)

$\mathrm{T}_{\text {spec }} \mathrm{x}$-calibration

(Turner+21) 8 obj in common; $\mathrm{T}_{\text {XMм }} 25 \%$ higher than $\mathrm{T}_{\text {efEDS }}$ L in agreement
\rightarrow dedicated XMM GO with Lovisari:
~20 obj, stay tuned ;-)

$\mathbf{T}_{\text {spec }} \mathbf{x}$-calibration

At a Chandra temperature of 10 keV , the average NuSTAR (3-10 keV) $\mathrm{T}_{\text {spec }}$ was (10.5 ± 3.7) and (15.7 ± 4.6) \% lower than Chandra for the broad- and hard-band fits, respectively

$\Psi_{\text {spec }} X$-calibration

(Nevalainen \& Molendi 23) The MOS/pn bias is systematic suggesting that MOS (pn) effective area may be calibrated too low (high), by $\sim 3-27 \%$ on average depending on the instrument and energy band. The excellent agreement of the energy dependencies (i.e. shapes) of the effective area of MOS2 and pn suggest that they are correctly calibrated within $\sim 1 \%$ in the $0.5-4.5 \mathrm{keV}$ band.
Comparison with an independent data set of point sources (3XMM) confirms this. The cluster sample indicates that the MOS1/pn effective area shape cross-calibration has an approximately linear bias amounting to $\sim 10 \%$ in maximum in the $0.5-4.5 \mathrm{keV}$ band

$\Psi_{\text {spec }} \mathbf{x}$-calibration: VS SZ

$$
T_{\text {mod-spec }}=\eta_{T} P_{S Z} / n_{e}
$$

Bourdin+17

Figure 6. Normalization of the spectroscopic temperatures measured in the nearby (left) and distant (right) cluster samples. Top: Normalization values. Black and blue points correspond to $X M M$-Newton and Chandra measurements, respectively. Horizontal lines depict temperature normalizations of the average profiles in each sample. Botin: Histogram of the normalization values.

$$
\eta=P_{s z} / P_{x}
$$

Ettori+20

Cosmology from the internal structures of Galaxy Clusters

- Mass distribution $\stackrel{>}{ }$ (SI)DM / MOND (Ettori+19; Eckert+22)
- Concentration/sparsity $\Rightarrow\left\{\Omega_{m} ; \sigma_{8}\right\}$ (Corasaniti+21, 22)
- Triaxial shape \Rightarrow consistency with Λ CDM (Sereno+18)
- X/SZ pressure profiles $\rightarrow \mathrm{H}_{0}$ (Kozmanyan+19; Ettori+20)
- Gas mass fraction $\Rightarrow\left\{\Omega_{\mathrm{m}} ; \boldsymbol{\Lambda}, \mathrm{W}\right\}$ (Ettori+10; Mantz+21)
\rightarrow Reliable \& robust reconstruction of the (total \& baryonic) mass distribution

Total mass from SZ/X-rays Total mass is the fundamental tool to use Galaxy clusters as cosmological probes

- low counts statistic: scaling relations

(for galaxy clusters mass function: $\mathrm{M}_{\mathrm{tot}} \mathrm{vs} \mathrm{L} / \mathrm{T} / \mathrm{M}_{\text {gas }} / \mathrm{Y}_{\mathrm{x}}$ or a combination of these...) Ettori et al. 2012; Ettori 2013 \& 2015

$$
\begin{aligned}
& M_{t o t} \propto L^{\alpha} M_{g}^{\beta} T^{\gamma} ; \quad 4 \alpha+3 \beta+2 \gamma=3 \\
& M_{\text {tot }} \sim L^{a} \text { T }^{-2 a+1.5} \\
& \mathrm{a}=0 \quad \ldots \quad \mathrm{M}_{\text {tot }} \sim \mathrm{T}^{1.5} \\
& M_{\text {tot }} \sim M_{\text {gas }}{ }^{\text {a }} \quad T^{-1.5 a+1.5} \\
& a=3 / 4 \quad \ldots M_{\text {tot }} \sim L^{3 / 4} \\
& a=1 / 2 \quad \ldots M_{\text {tot }} \sim(L T)^{1 / 2} \\
& a=0 \ldots M_{\text {tot }} \sim T^{1.5} \\
& a=1 \quad \ldots \quad M_{\text {tot }} \sim M_{\text {gas }} \\
& a=3 / 5 \quad \ldots \quad M_{\text {tot }} \sim\left(M_{\text {gas }} T\right)^{3 / 5} \\
& \sim Y^{3 / 5}
\end{aligned}
$$

The generalized scaling relations: $\boldsymbol{M}_{\text {tot }}=\boldsymbol{K} \boldsymbol{A}^{\boldsymbol{a}} \boldsymbol{B}^{\boldsymbol{b}}$

X-ray/SZ scaling relations: Self-similar $+\left\{f_{g}, C, \beta\right\}$

In galaxy clusters,

the relations between $\mathrm{M}_{\text {tot }}$ \& X-ray/SZ observables have a power-law behaviour with normalization, slope and \mathbf{z}-evolution that are simple to estimate in a self- similar scenario

The self-similar prediction on normalization \& slope can fully explain the observed \boldsymbol{X}-SZ SL once
$\left\{\mathrm{f}_{\mathrm{g}}(\mathrm{M}), \beta_{\mathrm{p}}(\mathrm{M}), \mathrm{C}\right\}$ are considered

$$
\begin{gather*}
\text { X-ray/SZ scaling relations: } \\
\text { Self-Similar }+\left\{f_{g^{\prime}} C, \beta\right\} \\
F_{z} M \sim \beta_{\mathrm{P}}^{\theta} f_{\mathrm{g}}^{-\phi}\left(F_{z}^{-1} L\right)^{\alpha}\left(F_{z} M_{\mathrm{g}}\right)^{\beta} T^{\gamma} \\
4 \alpha+3 \beta+2 \gamma=3 \\
\theta=\alpha / 2+\gamma \\
\phi=2 \alpha+\beta \tag{Ettori2015}
\end{gather*}
$$

The coming era of multiple observable signals from combined surveys in optical, submillimeter and X-ray wavebands invites a more holistic approach to modeling multiwavelength signatures of clusters. The combination of observable cluster signals reflects the astrophysical evolution of the coupled baryonic and dark matter components in massive halos: it improves mass selection \& estimates

[^1]\& ICM can be described by "universal" profiles (ie thermodynamic radial profiles that should be equal -within the intrinsic scatteronce rescaled by halo mass and redshift)
\& But, it is still missing a consistent picture that links these universal radial profiles and the integrated values of the ICM thermodynamical quantities, also quantifying the deviations from the standard self-similar gravity-driven scenario
(Ettori, Lovisari, Eckert 2023; arxiv:2211.03082)

i(cm)z

or a recipe to prepare an ICM

that matches observed spatially-resolved \& integrated quantities

- an "universal" $P=P_{500} P_{0} /\left(C_{500} x\right)^{c} /\left[1+\left(C_{500} x\right)^{a}\right]^{(b-c) / a}$
- $\quad a(c-M-z)$ relation, $\mathrm{C}_{200}=\mathrm{A} \mathrm{M}_{200}{ }^{\mathrm{B}}(1+\mathrm{z})^{\mathrm{C}}$
- stir them together in hydrostatic equilibrium
- then add a bit of 3 further ingredients:
(i) $f_{T}=T\left(R_{500}\right) / T$, (ii) $f_{g}=C^{0.5} f_{g a s,}$ (iii) hydrostatic bias $b_{H E}$

$$
\left\{\begin{array}{l}
f_{T, \mathrm{ESZ}}=0.697(\pm 0.103) \times(T / 5 \mathrm{keV})^{0.15(\pm 0.06)} \\
f_{g, \mathrm{ESZ}}=0.121(\pm 0.045) \times(T / 5 \mathrm{keV})^{0.45(\pm 0.09)} \\
C_{\mathrm{ESZ}}=(<1.4) \times(T / 5 \mathrm{keV})^{1.0(\pm 0.5)}
\end{array}\right.
$$

\& constraints on $b_{\text {HE }}$
\Rightarrow Ettori, Lovisari, Sereno (2020 A\&A 644 111)

i(cm)z

or a recipe to prepare an ICM

 that matches observed spatially-resolved \& integrated quantities- an "universal" $P=P_{500} P_{0} /\left(C_{500} x\right)^{c} /\left[1+\left(c_{500} x\right)^{a}\right]^{(b-c) / a}$
- a (c-M-z) relation, $\mathrm{C}_{200}=\mathrm{A} \mathrm{M}_{200}{ }^{\mathrm{B}}(1+\mathrm{z})^{\mathrm{C}}$
- stir them together in hydrostatic equilibrium
- then add a bit of 3 further ingredients:
(i) $\mathrm{f}_{\mathrm{T}}=\mathrm{T}\left(\mathrm{R}_{500}\right) / \mathrm{T}$, (ii) $\mathrm{f}_{\mathrm{g}}=\mathrm{C}^{0.5} \mathrm{f}_{\text {gas, }}$ (iii) hydrostatic bias b_{HE}
$>$ adding the redshift evolution
$>$ new calibrations in (M, z) based on >2020 scaling laws \& recent thermodynamic profiles
$>$ new constraints on b_{HE} (e.g. X-COP)
= Ettori, Lovisari, Eckert (2023; arXiv:2211.03082)

Unitersat p ofoip e (Nagai+07, Ghirardini+19)

$$
\mathrm{P}_{\mathrm{g}}=\mathrm{P}_{500} \mathrm{P}_{0} /\left(\mathrm{c}_{500} \mathrm{x}\right)^{\mathrm{c}} /\left[1+\left(\mathrm{c}_{500} \mathrm{x}\right)^{\mathrm{a}}\right]^{(\mathrm{b}-\mathrm{c}) / \mathrm{a}}
$$

4 cMATME1Q4iOM (Bhattacharya+13, Dutton+14)

$$
\begin{gathered}
\mathrm{c}_{200}=\mathrm{AM}_{200^{\mathrm{B}}(1+\mathrm{z})^{\mathrm{C}}} \\
\text { \& } \mathbf{C H E F}
\end{gathered}
$$

$$
\frac{G M_{t o t}(<r)}{r^{2}}=-\frac{d P_{g}}{d r} \frac{1}{\rho_{g}}
$$

$M_{t o t} \sim R T \sim \Delta R^{3} \sim T^{3 / 2} \sim M_{g a s} \sim L^{3 / 4} \sim Y^{3 / 5}$

Universal P profile + cMz relation \& H탈

$$
\begin{gathered}
f_{T}=T\left(R_{500}\right) / T=t_{0} T^{t 1} \\
f_{g}=C^{0.5} M_{g} / M_{\text {tot }}=f_{0} T^{f 1} \\
h=(1-b)=h_{0}
\end{gathered}
$$

As proposed in Ettori 2015 to accommodate for deviations from self-similar relations

$\mathrm{i}(\mathrm{cm}) \mathrm{z}$

$$
\begin{gathered}
M_{H E}=(1-b) M_{t o t} \\
R_{500} \sim M_{t o t}^{1 / 3} \\
Q_{500}=f\left(M_{t o t}\right)
\end{gathered}
$$

Universal profiles

From universal profiles

 to universal scaling laws- Some other applications: Study the impact of b; define the depletion parameter Y_{b}; rescale the characteristic physical quantities that renormalise the observed profiles

Quantity	$f(M, z)$	$f\left(f_{\text {gas }}\right)$	$f(T, z)$	$f(M, z)$
	self-similar		i $(\mathrm{cm}) \mathrm{z}$	
T_{Δ}	$M^{2 / 3} E_{z}^{2 / 3}$	$f_{\text {gas }}^{0}$	$T^{1+t_{1}} E_{z}^{t_{z}}$	$M^{2 / 3} E_{z}^{2 / 3}$
n_{Δ}	E_{z}^{2}	$f_{\text {gas }}^{1}$	$T^{f_{1}} E_{z}^{2+f_{z}}$	$M^{2 / 3} f_{1} /\left(1+t_{1}\right) E_{z}^{2+f_{2}+f_{1}\left(2 / 3-t_{2}\right) /\left(1+t_{1}\right)}$
P_{Δ}	$M^{2 / 3} E_{z}^{8 / 3}$	$f_{\text {gas }}^{1}$	$T^{1+t_{1}+f_{1}} E_{z}^{2+f_{2}+t_{2}}$	$M^{2 / 3+2 / 3 f_{1} /\left(1+t_{1}\right)} E_{z}^{8 / 3+f_{z}+f_{1}\left(2 / 3-t_{2}\right) /\left(1+t_{1}\right)}$
K_{Δ}	$M^{2 / 3} E_{z}^{-2 / 3}$	$f_{\text {gas }}^{-2 / 3}$	$T^{1+t_{1}-2 / 3 f_{1}} E_{z}^{-4 / 3-2 / 3 f_{2}+t_{2}}$	$M^{2 / 3-4 / 9 f_{1} /\left(1+t_{1}\right)} E_{z}^{-2 / 3-2 / 3 f_{2}-2 / 3 f_{1}\left(2 / 3-t_{2}\right) /\left(1+t_{1}\right)}$

Notes. The basic equations are $T_{\Delta}=f_{\mathrm{T}} T \sim T^{1+t_{1}} E_{z}^{t_{z}}=\left(E_{z} M\right)^{2 / 3}=\left(E_{z}^{3} R^{3}\right)^{2 / 3}$ and $n_{\Delta} \sim \Delta \rho_{c z} \sim f_{\mathrm{g}} E_{z}^{2} \sim T^{f_{1}} E_{z}^{2+f_{z}}$. All the other relations were obtained by combinations of those.

Q_{Δ}	a_{M}	a_{z}	a_{T}	$a_{T, z}$
T_{Δ}	$2 / 3[2 / 3]$	$2 / 3[2 / 3]$	$1.14(0.02)[1]$	$0.35(0.06)[0]$
n_{Δ}	$0.23(0.01)[0]$	$2.11(0.03)[2]$	$0.40(0.01)[0]$	$2.00(0.02)[2]$
P_{Δ}	$0.90(0.01)[2 / 3]$	$2.78(0.03)[8 / 3]$	$1.55(0.02)[1]$	$2.35(0.06)[2]$
K_{Δ}	$0.51(0.01)[2 / 3]$	$-0.74(0.02)[-2 / 3]$	$0.88(0.02)[1]$	$-0.98(0.06)[-4 / 3]$

[^0]: - assumption of spherical symmetry few \%
 - hydrostatic mass bias . $<$ < 10-30\%
 - gas temperature inhomogeneities . few-10-15\%
 - gas clumping . few $\%$
 - absolute X-ray temperature calibration . 15-20\%

[^1]: (e.g. Cunha09; Okabe+10; Stanek+10; Ettori+12-14; Evrard+14; Maughan 14; Rozo+14)

