# Chandra data analysis: tutorial



Astrophysics Laboratory course - AA2022-23

#### The spacecraft



### Outline of the Chandra tutorial

- Chandra webpage, software and data download
- Data structure
- Chandra threads and main parameter evaluation
- Data reprocessing and filtering
- Imaging analysis
  - □ Image visualization
  - □ Pileup evaluation & Webpimms
  - □ Source photon statistics
  - □ Smoothing
  - Contours
  - □ Choice of source and background regions
- □ Timing analysis: lightcurves & evaluation of variability
- Spectral extraction

## Chandra webpage & software CIAO

#### Chandra website: https://cxc.cfa.harvard.edu



#### Chandra CIAO website: https://cxc.cfa.harvard.edu/ciao

All relevant documents about telescope + instruments and manuals can be found here

## Data download: the Chandra archive

#### Chandra webchaser: https://cda.harvard.edu/chaser/

| Chandra                                                        | Observation Search             |                                                                                                     |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
|----------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|------------------------------------------------|----------------------|--|--|--|--|--|--|
| X-ray Center                                                   | r <u>New Search</u>            |                                                                                                     |                                  |                                                        | <u>Retrieval List</u> <u>Help</u>              | Chandra Data Archive |  |  |  |  |  |  |
| Search                                                         |                                |                                                                                                     |                                  |                                                        |                                                | Reset                |  |  |  |  |  |  |
| File Upload                                                    | Coordinates   Choose File r    | o file selected                                                                                     |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
|                                                                |                                |                                                                                                     | Cone Search 🛟                    |                                                        |                                                |                      |  |  |  |  |  |  |
| Target Name                                                    | <b>3C33</b>                    | Resolve Name                                                                                        | RA/Long/l                        | Dec/Lat/b                                              |                                                |                      |  |  |  |  |  |  |
| Name Resolver                                                  | SIMBAD/NED                     |                                                                                                     | Coord System Equatorial J2       | 2000 <b>‡</b> <u>Equinox</u> 2000 <u>Radius</u> 10 arc | min                                            |                      |  |  |  |  |  |  |
| Observation ID                                                 |                                | Sequence Number                                                                                     |                                  | Proposal Number                                        |                                                |                      |  |  |  |  |  |  |
| Proposal Title                                                 |                                | PI Name                                                                                             |                                  | Observer Name                                          |                                                |                      |  |  |  |  |  |  |
| Start Date                                                     |                                | Public Release Date                                                                                 |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
| Exposure Time (ks)                                             |                                | Approved Time (ks)                                                                                  |                                  | Avg. Count Rate (hz)                                   |                                                |                      |  |  |  |  |  |  |
| Archived<br>Observed<br>Scheduled<br>Unobserved<br>Untriggered | Science Category               | Solar System<br>Stars and WD<br>WD Binaries and CV<br>BH and NS Binaries<br>SN, SNR and Isolated NS |                                  | Type ER<br>GO<br>GTO<br>TOO<br>DDT<br>CAL              | 00<br>01<br><u>Observing Cycle</u><br>03<br>04 |                      |  |  |  |  |  |  |
| Instrument<br>ACIS-I<br>ACIS-S<br>HRC                          | Grating                        | None<br>LETG Exposure I<br>HETG                                                                     | ACIS TE<br>ACIS CC<br>HRC Timing | Joint Observatories<br>NOAO<br>NRAO<br>NUSTAR          | 00<br>01<br>Proposal Cycle<br>03<br>04         | Grid 🔶               |  |  |  |  |  |  |
| Customize Output:                                              |                                |                                                                                                     |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
| Sort Order                                                     | Status 🗘 😋 as                  | cending descending                                                                                  |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
| Row Limit                                                      | 50 \$                          |                                                                                                     |                                  |                                                        |                                                |                      |  |  |  |  |  |  |
| Coord System                                                   | Equatorial J2000 \$ Equinox 20 | 00 Format Sexagesimal (hh/dd                                                                        | 1 mm ss.ss) 💠                    |                                                        |                                                |                      |  |  |  |  |  |  |
| Save As                                                        | ( <b>†</b>                     |                                                                                                     |                                  |                                                        |                                                |                      |  |  |  |  |  |  |

Selection possible on the basis of source name/coordinates/PI name/ObsID, etc

| Chandra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                              |                               |                            |                                                       |               |                     | Search Resu                  | lts                       |                      |                              |                           |                               |                                     |                               |                       |                | The office                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-------------------------------|----------------------------|-------------------------------------------------------|---------------|---------------------|------------------------------|---------------------------|----------------------|------------------------------|---------------------------|-------------------------------|-------------------------------------|-------------------------------|-----------------------|----------------|---------------------------------------------|
| X-ray Center                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | New Search                       |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               | Search Results        | Retrieval List | Help<br>Chandra Data Archive                |
| View Observation Information Add Products to Retrieval List Constraints Constr |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
| Select all   Unselect all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
| Select * Row Seq Nu<br>1 701325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>um</u> * Obs ID * 1<br>5 6910 | Instrument * Gra<br>ACIS-S N | ting • Appr Exp •<br>ONE 20.0 | Exposure + Tar<br>19.91 3C | rget Name         PI Name           33         Murray |               | Dec • Status •      | Data Mode      Exp     FAINT | Mode + Avg<br>TE          | Cnt Rate + E<br>8.05 | 2vt Cnt + St<br>160293 2005- | tart Date +               | Public Releas<br>2005-11-09 0 | e Date + Proposa<br>6:11:47 0770107 | • <b><u>Type</u></b><br>3 GTO | Obs Cycle + P<br>07 0 | 7 A0           | Science Category<br>CTIVE GALAXIES AND QUAS |
| 2 701325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 7200                           | ACIS-S N                     | ONE 20.0                      | 19.92 3C                   | 33 Murray                                             | 01 08 51.20 + | 3 18 36.43 archived | I FAINT                      | TE                        | 8.20                 | 163252 2005-                 | -11-12 16:31:10           | 2005-11-14 1                  | 7:21:56 0770107                     | 3 GTO                         | 07 0                  | 7 A            | CTIVE GALAXIES AND QUAS                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              | you can                       | view tl                    | he details                                            | s of eac      | h obser             | vation                       |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1                            |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              | 🔽 Prima                   | v package            |                              |                           |                               |                                     |                               |                       |                |                                             |
| View Observatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Informatio                     | on                           |                               |                            |                                                       | Add           | Products to I       | Retrieval List               | Second                    | <u>dary packag</u>   | ge                           |                           |                               |                                     |                               |                       |                |                                             |
| elect all   <u>Unselect a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>all</u>                       |                              |                               |                            |                                                       |               |                     |                              | Custor                    | n selection          |                              |                           |                               |                                     |                               |                       |                |                                             |
| Select <b>\$</b> Row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seq_Num                          | ¢ <u>Obs ID</u> ¢            | Instrument 4                  | Grating                    | ◆ <u>Appr Exp</u> ◆                                   | Exposure \$   | Target Name         | ♦ <u>PI Name</u>             | <b>♦</b> <u><b>RA</b></u> | \$ De                | <mark>c</mark> ♦ <u>Stat</u> | itus 🗢 <mark>Dat</mark> a | a Mode                        | Exp Mode                            | ♦ <u>Avg</u>                  | Cnt Rate \$           | Evt Cnt        | ♦ <u>Start Date</u> ♦                       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 701325                           | 6910                         | ACIS-S                        | NONE                       | 20.0                                                  | 19.91         | 3C 33               | Murray                       | 01 08 51                  | 1.20 +13 18          | 8 36.43 arc                  | chived                    | FAINT                         | TE                                  |                               | 8.05                  | 16029          | 3 2005-11-08 00:20:44                       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 701325                           | 7200                         | ACIS-S                        | NONE                       | 20.0                                                  | 19.92         | 3C 33               | Murray                       | 01 08 51                  | 1.20 +13 18          | 8 36.43 arc                  | chived                    | FAINT                         | TE                                  |                               | 8.20                  | 16325          | 2 2005-11-12 16:31:10                       |
| <b>+</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Seq. #                           | ObsID                        | Instr                         |                            |                                                       | Ехро          | Target              |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                | Obs. date                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | ,                            |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The                              | firatd                       | iait (if A                    | numbe                      | ara) or th                                            | o firot i     | huo diai            | ite (if 5                    |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | num                              | topore) to                   | igit (il 4                    |                            | onving C                                              |               | the obse            | ns (II 5                     |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | num                              |                              | iis you i                     |                            |                                                       | ycie oi       |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
| \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                              |                               |                            |                                                       |               |                     |                              |                           |                      |                              |                           |                               |                                     |                               |                       |                |                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I I                              |                              | Mark o                        | ne (al                     | I) of the                                             | se bo         | kes to s            | select t                     | he ob                     | oserv                | ation(                       | (s) foi                   | r the                         | downl                               | oad                           |                       |                |                                             |
| An a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rchive                           | e (.tar)                     | file will                     | be pro                     | epared                                                | for the       | downl               | oad. Tl                      | nis co                    | ontair               | ns bot                       | th <b>pri</b>             | mary                          | and s                               | seco                          | ondar                 | y dat          | asets                                       |
| needeo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d for in                         | nmedia                       | ate use                       | for so                     | cientific                                             | purpo         | ses or (            | comple                       | te re                     | proce                | essing                       | g usin                    | ng the                        | e most                              | up-                           | to-da                 | te cal         | ibrations                                   |

and CIAO tools

# Details of the observation: instrument setup, CCDs in use, abstract of the proposal, pipeline-processed products, etc.

#### **Observation ID: 7200** Sequence Number: 701325 Status: archived 07701073 Observation ID: 7200 **Proposal Number:** Add to Retrieval List 07 Type: GTO **Proposal Cycle:** Primary package PI Name: Murray **Observer:** Kraft Secondary package Science Category: ACTIVE GALAXIES AND OUASARS Joint Observatories: None Custom selection 3C 33 Grid Name: **Target Name: RA** (J2000): 01 08 51.20 Summary Dec (J2000): +13 18 36.43Details V&V Report ACIS-S Data Mode: FAINT Instrument: **Proposal Abstract** Grating: NONE Images **Publications** Data packages Start Date: 2005-11-12 16:31:10 **Observing Cycle:** 07 Primary **Approved Time:** 20.00 ks **Public Release Date:** 2005-11-14 17:21:56 Secondary External links **Exposure Time:** 19.92 ks **Processing Status** Sequence Summary Related Observations By Sequence **By** Proposal By Monitor/Followup By Group By Grid

#### Observation ID: 7200

Sequence number (**7**01325 here): six-digit number, the first one provides the category of your observations (7=AGN, 8=clusters, etc.)

#### ALTERNATIVELY, using a CIAO task

• find\_chandra\_obsid '3c33'

 # obsid
 sepn
 inst grat
 time
 obsdate
 piname
 target

 6910
 1.7 ACIS-S NONE
 19.9 2005-11-08
 Murray "3C 33"
 33"

 7200
 1.7 ACIS-S NONE
 19.9 2005-11-12
 Murray "3C 33"

download\_chandra\_obsid 7200

In case you would like to download more than one dataset:

• download\_chandra\_obsid 7200, 6910

### Data structure

- → package\_3974172\_221113122215.tar (using webchaser; archive file)
- tar xvf package\_ 3974172\_221113122215.tar → directory 7200/

axaff07200N004\_VV001\_vv2.pdf
00README
oif.fits
primary
secondary

Note: ciao tools work also on gzipped (compressed) files

#### PRIMARY

orbitf248097900N001\_eph1.fits.gz pcadf07200\_000N001\_asol1.fits.gz acisf07200\_000N004\_fov1.fits.gz acisf07200\_000N004\_bpix1.fits.gz acisf07200N004\_cntr\_img2.jpg acisf07200N004\_cntr\_img2.fits.gz acisf07200N004\_full\_img2.jpg acisf07200N004\_full\_img2.fits.gz acisf07200N004\_evt2.fits.gz

Scientific data + pointing information + bad pixel file + fully calibrated events (evt2)

Housekeeping files + bias + mask + unfiltered event file (evt1)

#### SECONDARY

acisf248199703N004\_2\_bias0.fits.gz acisf248199703N004\_1\_bias0.fits.gz acisf248199703N004\_5\_bias0.fits.gz acisf248199703N004\_4\_bias0.fits.gz acisf248199703N004\_3\_bias0.fits.gz acisf248200890N004\_pbk0.fits.gz acisf07200\_000N004\_stat1.fits.gz acisf07200\_000N004\_msk1.fits.gz acisf07200\_000N004\_flt1.fits.gz acisf07200\_000N004\_flt1.fits.gz acisf07200\_000N004\_evt1.fits.gz acisf07200\_00N004\_evt1.fits.gz acisf07200\_00N004\_evt1.fits.gz

#### FILE FORMAT

Instrument ObsID evt2 acisf07200N004 \_\_evt2.fits.gz

f=flight file revision file format (.gz: compressed)

- The event file (and most of the files) are in FITS (Flexible Image Transport System) format
- A single Chandra file can contain multiple "datasets" (e.g., data, Good Time Intervals, weight ٠ map, regions) which are stored in "blocks"
- Blocks can contain image or table data ٠
- The event file is a sort of 4-D array which stores for each event the information about position, • energy and time of arrival of the photons + other info
- dmstat and dmlist (ciao tools) and fv (ftool) allows the visualization of these blocks

|       |                              |       | —      | 0        |             |            |                                                     |
|-------|------------------------------|-------|--------|----------|-------------|------------|-----------------------------------------------------|
| olumr | ns for Table Block EV        | /ENTS |        |          |             |            |                                                     |
| olNo  | Name                         | Unit  | Туре   | Range    | Ν           | ull        |                                                     |
| 1     | time                         | S     | Real8  | 24820033 | 3.731449991 | 5:24822251 | 8.3199700117 – S/C TT corresponding to mid-exposure |
| 2     | ccd_id                       |       | Int2   | 0:9      |             | -          | CCD reporting event                                 |
| 3     | node_id                      |       | Int2   | 0:3      |             | _          | CCD serial readout amplifier node                   |
| 4     | expno                        |       | Int4   | 0:214748 | 3647        | _          | Exposure number of CCD frame containing event       |
| 5     | chip(chipx,chipy)            | pixel | Int2   | 1:1024   |             | _          | Chip coords                                         |
| 6     | <pre>tdet(tdetx,tdety)</pre> | pixel | Int2   | 1:8192   |             | 9999       | ACIS tiled detector coordinates                     |
| 7     | det(detx,dety)               | pixel | Real4  | 0.50:    | 8192.50     | _          | ACIS detector coordinates                           |
| 8     | sky(x,y)                     | pixel | Real4  | 0.50:    | 8192.50     | _          | sky coordinates                                     |
| 9     | pha                          | adu   | Int4   | 0:36855  |             | _          | total pulse height of event                         |
| 10    | pha_ro                       | adu   | Int4   | 0:36855  |             | _          | total read-out pulse height of event                |
| 11    | energy                       | eV    | Real4  | 0: 1000  | 000.0       | _          | nominal energy of event (eV)                        |
| 12    | pi                           | chan  | Int4   | 1:1024   |             | _          | pulse invariant energy of event                     |
| 13    | fltgrade                     |       | Int2   | 0:255    |             | _          | event grade, flight system                          |
| 14    | grade                        |       | Int2   | 0:7      |             | _          | binned event grade                                  |
| 15    | status[4]                    |       | Bit(4) |          |             |            | event status bits                                   |
|       |                              |       |        |          |             |            |                                                     |

#### dmlist acisf07200N004 evt2.fits.gz cols

fv acisf07200N004\_evt2.fits.gz (fv: ftool, HEASOFT package)

N(rows)=number of events (total counts for the entire observation)

- X,Y  $\rightarrow$  image
- Time  $\rightarrow$  lightcurve
- Energy  $\rightarrow$  spectrum

| view view view view view view view view |           |        |                       |        |       |      |     |        |  |  |  |
|-----------------------------------------|-----------|--------|-----------------------|--------|-------|------|-----|--------|--|--|--|
| File Edit T                             | ools Help |        |                       |        |       |      |     |        |  |  |  |
| Index Extension Type Dimension View     |           |        |                       |        |       |      |     |        |  |  |  |
| 0                                       | Primary   | Image  | 0                     | Header | Image |      | 1   | Table  |  |  |  |
| <b>1</b>                                | EVENTS    | Binary | 19 cols X 163252 rows | Header | Hist  | Plot | All | Select |  |  |  |
| 2                                       | GTI       | Binary | 2 cols X 1 rows       | Header | Hist  | Plot | Ali | Select |  |  |  |
| <b>3</b>                                | GTI       | Binary | 2 cols X 1 rows       | Header | Hist  | Plot | Ali | Select |  |  |  |
| <b>4</b>                                | GTI       | Binary | 2 cols X 1 rows       | Header | Hist  | Plot | Ali | Select |  |  |  |
| <b>=</b> 5                              | GTI       | Binary | 2 cols X 1 rows       | Header | Hist  | Plot | All | Select |  |  |  |
| 6                                       | GTI       | Binary | 2 cols X 1 rows       | Header | Hist  | Plot | All | Select |  |  |  |

X fv: Binary Table of acisf07200N004\_evt2.fits.gz[1] in /Users/chris/Downloads/7200/primary/

File Edit Tools Help

|        | 📕 time             | 📕 ccd_id | node_id | 📕 expno | E chipx | E chipy | 📕 tdetx | 📕 tdety | 📕 detx       | 📕 dety       | ×                     | <b>y</b>     | 📕 pha  |
|--------|--------------------|----------|---------|---------|---------|---------|---------|---------|--------------|--------------|-----------------------|--------------|--------|
| Select | 1D                 | 11       | 11      | 1J      | 11      | 11      | 11      | 11      | 1E           | 1E           | 1E                    | 1E           | 1J     |
| E All  | S                  |          |         |         | pixel   | pixel   | pixel   | pixel   | pixel        | pixel        | pixel                 | pixel        | adu    |
| Invert | Modify             | Modify   | Modify  | Modify  | Modify  | Modify  | Modify  | Modify  | Modify       | Modify       | Modify                | Modify       | Modify |
| 1      | 2.482015071960E+08 | 7        | 0       | 196     | 200     | 78      | 4117    | 1780    | 4.076034E+03 | 4.549596E+03 | 3.662684 <b>E</b> +03 | 4.165308E+03 | 3570   |
| 2      | 2.482015071960E+08 | 7        | 2       | 196     | 715     | 410     | 4632    | 2112    | 4.590527E+03 | 4.217792E+03 | 4.090064E+03          | 4.603649E+03 | 3498   |
| 3      | 2.482015071960E+08 | 7        | 1       | 196     | 356     | 423     | 4273    | 2125    | 4.231270E+03 | 4.205740E+03 | 4.030521E+03          | 4.249155E+03 | 3698   |
| 4      | 2.482015071960E+08 | 7        | 2       | 196     | 541     | 834     | 4458    | 2536    | 4.416169E+03 | 3.795208E+03 | 4.469598E+03          | 4.348833E+03 | 186    |
| 5      | 2.482015071960E+08 | 7        | 2       | 196     | 764     | 858     | 4681    | 2560    | 4.638471E+03 | 3.770748E+03 | 4.537723E+03          | 4.561847E+03 | 2246   |
| 6      | 2.482015071960E+08 | 7        | 1       | 196     | 412     | 876     | 4329    | 2578    | 4.287323E+03 | 3.752959E+03 | 4.485414E+03          | 4.214162E+03 | 192    |
| 7      | 2.482015071960E+08 | 7        | 3       | 196     | 854     | 917     | 4771    | 2619    | 4.728439E+03 | 3.711523E+03 | 4.613638E+03          | 4.638261E+03 | 3643   |
| 8      | 2.482015071960E+08 | 7        | 3       | 196     | 948     | 1021    | 4865    | 2723    | 4.822889E+03 | 3.607499E+03 | 4.734349E+03          | 4.710167E+03 | 3222   |
| 9      | 2.482015072370E+08 | 6        | 0       | 196     | 42      | 363     | 2917    | 2065    | 2.875089E+03 | 4.266157E+03 | 3.701948E+03          | 2.931993E+03 | 327    |
| 10     | 2.482015072370E+08 | 6        | 0       | 196     | 228     | 407     | 3103    | 2109    | 3.060800E+03 | 4.221684E+03 | 3.782420E+03          | 3.105171E+03 | 2691   |
| 11     | 2.482015072370E+08 | 6        | 0       | 196     | 53      | 764     | 2928    | 2466    | 2.885740E+03 | 3.865692E+03 | 4.096550E+03          | 2.862894E+03 | 3597   |
| 12     | 2.482015072370E+08 | 6        | 2       | 196     | 763     | 929     | 3638    | 2631    | 3.594637E+03 | 3.699975E+03 | 4.399764E+03          | 3.524753E+03 | 2968   |
| 13     | 2.482015073191E+08 | 8        | 3       | 196     | 980     | 172     | 5939    | 1874    | 5.895279E+03 | 4.455199E+03 | 4.116531E+03          | 5.929561E+03 | 3331   |
| 14     | 2.482015073191E+08 | 8        | 1       | 196     | 394     | 374     | 5353    | 2076    | 5.309974E+03 | 4.254143E+03 | 4.197331E+03          | 5.315982E+03 | 2031   |
| 15     | 2.482015073601E+08 | 2        | 1       | 196     | 490     | 347     | 3408    | 3596    | 3.368734E+03 | 2.735235E+03 | 5.300347E+03          | 3.111800E+03 | 2753   |
| 16     | 2.482015073601E+08 | 2        | 1       | 196     | 284     | 384     | 3445    | 3802    | 3.405527E+03 | 2.529794E+03 | 5.509002E+03          | 3.107057E+03 | 2936   |
| 17     | 2.482015073601E+08 | 2        | 3       | 196     | 826     | 523     | 3584    | 3260    | 3.545517E+03 | 3.070377E+03 | 5.006994E+03          | 3.351626E+03 | 3787   |
| 18     | 2.482015073601E+08 | 2        | 0       | 196     | 233     | 891     | 3952    | 3853    | 3.911134E+03 | 2.478654E+03 | 5.659545E+03          | 3.592432E+03 | 3683   |
| 19     | 2.482015103370E+08 | 7        | 1       | 197     | 418     | 76      | 4335    | 1778    | 4.293997E+03 | 4.551604E+03 | 3.703278E+03          | 4.379562E+03 | 3339   |

### Data analysis: Chandra threads

#### https://cxc.cfa.harvard.edu/ciao/threads/

Description of *ciao* commands/tools to be used, depending on the goals of the project and the kind of analysis to be carried out

#### **Science Threads**

WHAT'S NEW | WATCH OUT

Top | All | Intro | Data Prep | Imag | Imag Spec | Grating | Timing | psf | TTT || Sherpa | Proposal | PSF Central

#### <u>All threads</u>

A list of all the threads on one page.

#### Introduction UPDATED

Beginners should start here. The Introductory threads provide an overview of the main components (GUI applications, parameter files) and concepts (the Data Model, filtering) in the CIAO data analysis software.

#### **Data Preparation**

When Chandra data goes through <u>Standard Data Processing</u> (SDP), the most recently available calibration is applied to it. Since this calibration is continuously being improved, one should check whether there are newer files available. Similarly, some science decisions are made during SDP; every user has the option to reprocess the data with different parameters.

#### Imaging UPDATED

The Imaging threads cover a wide range of topics that include source detection, creating exposure maps and normalized images, and calculating image statistics. How to create color images for publication is addressed, as well as merging data from multiple observations.

#### Imaging Spectroscopy

After extracting source and background PI or PHA spectra from an imaging observation, the appropriate response files (ARF, RMF) are created so that the data may be modeled and fit. In the case of multiple or extended sources, a weighted ARF and RMF are built for the spectral analysis.

#### Grating Spectroscopy

If new calibration has been applied to the event file, the grating spectrum should be re-extracted as well. It is then possible to build grating response files (gARF, gRMF) in order to model and fit the data.

#### **Timing Analysis**

### Data analysis: main data parameter evaluation

Preliminary checks on some useful data-related parameters

- punlearn dmkeypar
- dmkeypar 7200/primary/\*evt2\* EXPOSURE echo+
- dmkeypar 7200/primary/\*evt2\* DATAMODE echo+
- dmkeypar 7200/primary/\*evt2\* DETNAM echo+
- dmkeypar 7200/primary/\*evt2\* DATE-OBS echo+

- → OUTPUTS
- dmkeypar 20908/primary/\*evt2\* EXPOSURE echo+ 19920.379835851
- dmkeypar 20908/primary/\*evt2\* DATAMODE echo+ FAINT
- dmkeypar 20908/primary/\*evt2\* DETNAM echo+ ACIS-23678
- dmkeypar 20908/primary/\*evt2\* EXPTIME echo+ 2005-11-12T16:32:13

Reset the dmkeypar file Nominal exposure time Data mode (faint/vfaint) Detector in use Date of observation

- → T=19.92 ks
- → FAINT mode
- → ACIS-S in use (ccd=7: aimpoint of acis-s)
- → Nov. 12<sup>th</sup>, 2005

#### Data analysis: data reprocessing. I



### Data analysis: data reprocessing. II

chandra\_repro task

- punlearn chandra\_repro
- chandra\_repro indir=7200 outdir=7200\_new verbose=3 check\_vf\_pha=no

In case of FAINT data-mode data, check\_vf\_pha=no; in case of VFAINT: check\_vf\_pha=yes

#### To list all of the options in the parameter file:

plist chandra\_repro

'mode' to reduce the impact of the already limited background in Chandra observations

comprehensive of many different tasks

Parameters for /Users/chris/cxcds\_param4/chandra\_repro.par

indir = ./ outdir = (root = ) (badpixel = yes) (process\_events = yes) (destreak = yes) (destreak = yes) (set\_ardlib = yes) (check\_vf\_pha = no) (pix\_adj = default) (recreate\_tg\_mask = no) (asol\_update = yes) (cleanup = yes) (clebber = no) (verbose = 1) (mode = ql)

# Data analysis: filtering

#### Newly reprocessed files

pcadf07200\_000N001\_asol1.fits acisf07200\_000N004\_fov1.fits acisf07200\_000N004\_bpix1.fits acisf07200\_000N004\_stat1.fits acisf07200\_000N004\_msk1.fits acisf07200\_000N004\_mtl1.fits acisf248200890N004\_pbk0.fits axaff07200N004\_VV001\_vv2.pdf acisf07200\_repro\_bpix1.fits acisf07200\_repro\_flt2.fits acisf07200\_repro\_evt2.fits acisf07200\_repro\_evt2.fits

Newly 'reprocessed' event file **evt2** No selection of the energy band yet

Include only 'good' data (based on grades and status) and select the energy range where Chandra is mostly sensible (keep in mind the effective area; here: 300–7000 eV)

- punlearn dmcopy
- dmcopy "7200\_new/acisf07200\_repro\_evt2.fits[EVENTS]
   [grade=0,2,3,4,6,status=0,energy=300:7000]" 7200\_new/obs7200\_037keV\_repro\_evt2.fits

in one line

Alternatively, you can use the *pset command* to setup everything (one command per line):

- punlearn dmcopy
- pset dmcopy infile="7200\_new/acisf07200\_repro\_evt2.fits[grade=0,2,3,4,6,status=0,energy=300:7000]"
- pset dmcopy outfile=7200\_new/obs7200\_037keV\_repro\_evt2.fits
- dmcopy

## Data analysis: images in different bands

## obs7200\_037keV\_repro\_evt2.fits

ObsID band reprocessed evt2 file

The event file can be visualized as an image in ds9 If you need to use tasks requiring images (not event files), you may proceed in producing them (e.g., in different energy bands to enhance the contrast between different components – nuclear vs. extended emission – and adopting different binning)

Here the images (\_bin1) preserve the original pixel size: **1 pix=0.492**" – Note: huge files!

- cd 7200\_new/
- punlearn dmcopy
- dmcopy "obs7200\_037keV\_repro\_evt2.fits[bin X=1,Y=1][energy=500:7000]" 3c33\_057keV\_ima\_bin1.fits
- dmcopy "obs7200\_037keV\_repro\_evt2.fits[bin X=1,Y=1][energy=500:2000]" 3c33\_052keV\_ima\_bin1.fits
- dmcopy "obs7200\_037keV\_repro\_evt2.fits[bin X=1,Y=1][energy=2000:7000]" 3c33\_27keV\_ima\_bin1.fits

Suggestion: use appropriate names for your products (e.g., clearly indicating the energy band, whether it is either an image or an event file, etc.)

## Data analysis: image visualization

ds9 obs7200\_037keV\_repro\_evt2.fits &

ds9 will open the event file as it were an image (i.e., using the X,Y info)

- ds9 3C33\_052keV\_ima\_bin1.fits &
- ds9 3C33\_27keV\_ima\_bin1.fits &

ds9 will open the images produced in two different energy ranges

ds9 3C33\_052keV\_ima\_bin1.fits 3C33\_27keV\_ima\_bin1.fits &

two images open at the same time

ds9 3C33\_052keV\_ima\_bin1.fits -region 3c33\_r3.reg &

soft image + region file with source position

Region file  $\rightarrow$  ascii file with indication of the source position [here two examples: fk5 (WCS, World Coordinates Systems) coordinates and physical (i.e., detector related) coordinates in CIAO format] - Name also the region files properly (e.g., \_r3: R<sub>circle</sub>=3")

possible uses of ds9

```
3c33_r3_fk5.reg:
fk5;circle(1:08:52.85,+13:20:14.0,3.0")
3c33_r3_phys.reg:
circle(4011.2,4295.5,6.1)
```

In the following, we will call the source extraction region as 3c33\_r3.reg

 ds9 3C33\_052keV\_ima\_bin1.fits -region 3c33\_r3.reg 3C33\_27keV\_ima\_bin1.fits -region 3c33\_r3.reg &
 All in a single line on the terminal



The effective area of X-ray instruments (e.g., Chandra) reaches its peak below 2 keV; however, the number of photons collected on the detector depends also on the intrinsic spectrum of the source

# Data analysis: pileup. I

http://cxc.harvard.edu/ciao/download/doc/pileup\_abc.pdf

Two or more photon are collected during the same read-out in the same pixel, and are read as a single event (with higher energy)

 $\rightarrow$  loss of information from these events

→ distortion in the observed spectrum (hardening, i.e., 'more' photons in the hard band) In extreme case: a "hole" at the center of the bright emitting source



Readout streak: the streak photons are clocked out in the wrong row, hence they are assigned the incorrect CHIPY value

# Data analysis: pileup. II

#### EFFECTS OF PILEUP

ENERGY MIGRATION photon energies sum to create a detected event with higher energy GRADE MIGRATION event grades migrate towards values inconsistent with real photon events

→ net decrease in the observed count rate

 $\rightarrow$  net decrease in the fractional rms variability of the lightcurve

The spectral shape of the source results to be distorted

#### Avoid/limit pileup:

(a) fasten the reading of the CCD (using the subarray option  $\rightarrow$  only a portion of the CCD around the source of interest is read)

(b) extract the spectrum from an annulus centered on the source (hence removing the "inner part" of the source, which is mostly affected by pileup)

Pileup mitigation: use an XSPEC – pileup model



## Data analysis: source photon statistics. I

ds9 3c33\_057keV\_ima\_bin1.fits -region 3c33\_r3.reg &



#### If funtools are installed in ds9: Analysis $\rightarrow$ Funtools $\rightarrow$ Counts in region



# Data analysis: source photon statistics. II

Alternatively, using CIAO tools:

 dmstat "3C33\_057keV\_ima\_bin1.fits[sky=circle(1:08:52.85,+13:20:14.0,0.05')]" centroid=no



Values should be very similar to the previous ones

# Data analysis: pileup. III

https://cxc.harvard.edu/toolkit/pimms.jsp

Use **pimms/webpimms** to convert fluxes into count rates and viceversa. In this case, we use it to estimate the pileup fraction in our Chandra observation

#### Input values

- Cycle 7 observation
- Instr: ACIS-S (none=no grating)
- Band=0.5-7 keV
- CR=0.065 cps
- Model: powerlaw with Γ=1.8 (assumption)
- $N_{H,Gal} = 2.96 \times 10^{20} \text{ cm}^{-2}$

Lowering the *frame time* (CCD reading time) using a subarray configuration would have provided a lower pileup fraction (PI's choice)

Pileup fraction=8%

Output value

PIMMS v4.11a: with ACIS Pile up and Background Count Estimation

|                        | Input                                                           | Output                                                                               |
|------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                        | <u>Count Rate</u> <u>Flux</u> <u>Flux Density</u>               | Count Rate <u>Flux</u> Flux Density                                                  |
|                        | Mission:Detector/Grating/FilteCHANDRA-Cycle 7\$ACIS-S/None/None | Mission:     Detector/Grating/Filter:       CHANDRA-Cycle 7 +     ACIS-S/None/None + |
| h                      | Input Energy: 0.5 to 7 keV                                      | Output Energy: 0.5 to 7                                                              |
| <b>1</b> <sup>-2</sup> | Model: Galactic NH: Redsl<br>Power Law  2.96e20 cm**-2          | hift(z): Redshifted NH: Photon Index: Count Rate:<br>1.8 0.065 0.065                 |
| d <u>&gt;</u>          | Frame Time:<br>Specify $\Rightarrow$ 3.2 sec                    |                                                                                      |
| -                      | CALCULAT                                                        | E CLEAR HELP                                                                         |
|                        | PIMMS Prediction: Pileup: Predi                                 | cted piled count rate: Background Count Rate:                                        |
|                        | 6.500E-02 8 1.769                                               | E-1 5.53E-2 2.4E-5                                                                   |
|                        | cts/sec count rate % cts                                        | /frame cts/sec cts/sec                                                               |

(not so high to significantly impact the analysis)

# Data analysis: smoothing the image

Smoothing is used to enhance faint structures. It consists of substituting the value of each pixel by the value obtained by weighting the nearby pixels using a given function (e.g., a Gaussian)



ds9  $\rightarrow$  Analysis  $\rightarrow$  Smoothing & Smooth Parameters

Alternatively: use ciao tool csmooth

### Data analysis: contours. I





Analysis  $\rightarrow$  Contour parameters  $\rightarrow$  File  $\rightarrow$  Open  $\rightarrow$  radio.ctr

## Data analysis: contours. II

Load the e.g. radio contours on the X-ray image

ds9 obs7200\_037keV\_repro\_evt2.fits -contour load radio.ctr

Alternatively:

- ds9 obs7200\_037keV\_repro\_evt2.fits & → Analysis
   → Contour Parameters → File → Open → radio.ctr
- 7 Contour l'arameters 7 l'he 7 Open 7 ladio.

Overlay of contours of one image onto another image (both with good astrometry) at a different wavelength allows for a quick comparison of the emissions. Remember that sensitivity and resolution issues may limit the comparison





### Data analysis: selection of source and back regions

source extraction region (ascii file)

ds9 3C33\_057keV\_ima\_bin1.fits -region 3c33\_r3.reg -region back.reg &



background extraction region (ascii file)

#### Source

- in case of pointlike emission, refer to the encircled energy fraction (EEF; see manuals) for the choice of the extraction region
- number of counts vs. signal-to-noise ratio 'compromise': for faint/weak sources, smaller extraction regions are usually preferred

#### Background

 close to the source and large enough to adequately 'sample' the local level of background

# Data analysis: timing. I

Creare a background-subtracted light curve

Source region  $\rightarrow$  source\_r3.reg circle(4011.2,4294.5,6.1)

- Background region → back.reg circle(3948.5,4307.5,20)
- punlearn dmextract
- pset dmextract infile="obs7200\_037keV\_repro\_evt2.fits[sky=region(source\_r3.reg)][bin time=::1000]

MIN:MAX:BIN  $\rightarrow$  Binning=1000 s (depending on the flux of the source)

- pset dmextract outfile="3C33\_src\_lc\_1ks.fits" resulting light curve
- pset dmextract bkg="obs7200\_037keV\_repro\_evt2.fits[sky=region(back.reg)]"
- pset dmextract opt="ltc1"
- dmextract
- [...]

To visualize the columns of the output lightcurve file:

dmlist 3C33\_src\_lc\_1ks.fits cols

# Data analysis: timing. II

Visualization of the source lightcurve. Method II with the FTOOL package **Icurve** 

• punlearn lcurve

lcurve 1.0 (xronos6.0)

Reset the lcurve (ftool) parameter file

#### Icurve

Number of time series for this task[1] Ser. 1 filename +options (or @file of filenames +options)[file1] 3C33 src lc 1ks.fits Series 1 file 1:3C33\_src\_lc\_1ks.fits Selected FITS extensions: 1 - RATE TABLE; Source ..... 3C 33 Start Time (d) .... 13686 16:32:13.731 Stop Time (d) ..... 13686 22:41:58.320 FITS Extension .... 1 - `LIGHTCURVE` No. of Rows ..... 23 Bin Time (s) ..... 1000. Right Ascension ... 1.7208233688112E Internal time sys.. Converted to TJD Declination ..... 1.3310165045310E Experiment ..... CHANDRA ACIS Corrections applied: Vignetting - No ; Deadtime - No ; Bkgd - No ; Clock - Yes Selected Columns: 3- Time; 5- Y-axis; 6- Y-error; File contains binned data. Name of the window file ('-' for default window)[-] Expected Start ... 13686.68904781771 (days) 16:32:13:731 (h:m:s:ms) Expected Stop .... 13686.94581388854 (days) 22:41:58:320 (h:m:s:ms) Minimum Newbin Time 1000.0000 (s) for Maximum Newbin No.. Default Newbin Time is: 1000.0000 (s) (to have 1 Intv. of 23 Newbins) Type INDEF to accept the default value Newbin Time or negative rebinning[4.6692607009327] 1000. Newbin Time ..... 1000.0000 (s) Maximum Newbin No. Default Newbins per Interval are: (giving 1 Interval of 23 Newbins) Type INDEF to accept the default value Number of Newbins/Interval[10] 23 23 Newbins of (s) Maximum of 1 Intvs. with 1000.00 Name of output file[default] Do you want to plot your results?[yes] Enter PGPLOT device[/XW] 23 analysis results per interval 100% completed Intv 1 Start 13686 16:40:33 Avg 0.5743E-01 Chisq 165.6 Var 0.4135E-03 Newbs. Ser.1 Min 0.000 Max 0.7800E-01expVar 0.5743E-04 Bins

Lightcurve previously produced using dmextract

Information contained in the lightcurve file. Bin time=1000s (you may adopt a different binning within lcurve)  $\rightarrow$  23 datapoints (roughly, exposure/1000s)

Newbin Time = 1000s (as the original)  $\rightarrow$  23 time bins  $\rightarrow$  You may decide here to apply a different bin interval (>1000s implies a lower number of bins, hence higher S/N in each bin but overall losing time resolution)  $\rightarrow$  compromise considering all these 'effect'  $\rightarrow$  It depends on how bright y

Default PGPLOT (plotting) window: /xw

## Data analysis: timing. III



To overcome these issues, we may rescale the x-axis to include only reasonably "good" datapoints

- PLT > rescale x 3000 23000
- PLT > rescale y 0.02 0.1

## Data analysis: timing. IV



## Data analysis: timing. V



PLT > quit

# Data analysis: timing. VI

Is the source variable? Apply the  $\chi^2$  test

Binning is a compromise between the SNR of each time bin and the temporal resolution (higher SNR in each bin  $\leftarrow \rightarrow$  lower number of temporal bins). It should be adjusted on the basis of the source photon statistics and the length of the observation.

To establish whether a source is variable during the observation, we can apply the  $\chi^2$  test



**C**<sub>i</sub>: observed number of counts in each temporal bin i (or count rate in each time interval) **<C>:** average number of counts over the entire observation

 $\sigma_i$ : Poissonian error associated with the number of counts  $C_i$ 

v=n-1: degrees of freedom (n=number of datapoints)

Compute the null-hypothesis probability that the source is not variable (see more on this in E. Torresi's tutorial on XMM-Newton data)

## Data analysis: spectral extraction

#### Four files are needed for X-ray spectral analysis and will be produced by **specextract**:

- Source spectrum
- Background spectrum
- Ancillary Response File (ARF)
- Redistribution Matrix File (RMF)
- punlearn specextract
- pset specextract infile="obs7200\_037keV\_repro\_evt2.fits[sky=region(source\_r3.reg)]"
- pset specextract bkgfile="obs7200\_037keV\_repro\_evt2.fits[sky=region(back.reg)]"
- pset specextract outroot=3C33\_r3
- pset specextract asp= pcadf07200\_000N001\_asol1.fits
- pset specextract mskfile= acisf07200\_000N004\_msk1.fits
- pset specextract <a href="mailto:badpixfile=acisf7200\_repro\_bpix1.fits">badpixfile=acisf7200\_repro\_bpix1.fits</a>
- pset specextract weight=no → produces an ARF for a point-like source
- pset specextract correct=yes → energy-dependent point-source aperture correction (EEF)
- pset specextract verbose=2 The opposite (weight=yes & correct=no) for extended src
- pset specextract grouptype=NONE \_ Data can be rebinned either here or later using
- pset specextract binspec=NONE the ftool grppha (see the XSPEC tutorial)
- specextract

#### Response matrices: ARF

**ARF**: indicates the effective response (hence sensitivity) of the mirrors+instrument at a given source position on the detector

Edit Colors Tools Zoom Replot Help

• fv 3C33 r3.corr.arf



#### PSF FRAC: a sort of aperture correction (see EEF concept)

# The 'meaning' of ARF



- Effective area in cm<sup>2</sup>
- **Geometric area** 'cross section' (i.e., entrance aperture) of the telescope
- **Reflectivity** fraction of photons reflected by the mirrors (grazing incidence)
- Vignetting fraction of photons 'lost' as a function of the distance wrt. the optical axis (9). This effect is maxim for high-energy photons
- **Quantum Efficiency** fraction of incident photons registered by the detector. (x,y) represents the position on the detector

The effective area represents the capability of the telescope+detector to collect photons

#### Response matrices: RMF

**RMF**: links the instrumental channel scale with the physical energy (wavelength) scale • fv 3C33\_r3.rmf

| File Edit 1 | ools Help  |              |                       |        |      |      |     |        |            | File E          | dit Colors Tools Zoom | Replot Help         |                     |
|-------------|------------|--------------|-----------------------|--------|------|------|-----|--------|------------|-----------------|-----------------------|---------------------|---------------------|
| Index       | Extension  | Type [       | Dimension             |        |      | View |     |        |            |                 |                       |                     | 3C33_r3.rmf(1-1024) |
| <b>0</b>    | Primary    | Image        | 0                     | Header | lm   | age  |     | Table  |            | Graph o         | coordinates:          | _                   |                     |
|             | MATRIX     | Binary 6 col | s X 1070 rows         | Header | Hist | Plot | All | Select |            | Physica         | A )<br>al pixel:      |                     |                     |
| 2           | EBOUNDS    | Binary 3 col | s X 1024 rows         | Header | Hist | Plot | All | Select |            | (X)<br>Image I  | X)<br>nivel:          | _                   |                     |
| File Edit   | Tools Help |              |                       |        |      |      |     | ·      |            | (X,<br>Pixel va | X)<br>alue:           | _                   |                     |
|             |            | E MIN        | E MAX                 | _      |      |      |     |        |            | ×()             | )                     |                     |                     |
| Select      | 1J         | 1E           | -<br>1E               |        |      |      |     |        |            |                 |                       |                     |                     |
| All         | channel    | keV          | keV                   |        |      |      |     |        |            |                 | 3C33                  | 3_r3.rmf(E_MIN_1-10 | )24)                |
| Invert      | Modify     | Modify       | Modify                |        |      |      |     |        |            | E_I             | MIN (keV)             |                     |                     |
| 1           | 1          | 7.300000E-03 | 1.460000E-02          | Ī      |      |      |     |        |            | 15              | -                     |                     |                     |
| 2           | 2          | 1.460000E-02 | 2.920000E-02          |        |      |      |     |        |            |                 |                       |                     |                     |
| 3           | 3          | 2.920000E-02 | 4.380000E-02          |        |      |      |     |        |            |                 |                       |                     |                     |
| 4           | 4          | 4.380000E-02 | 5.840000E-02          |        |      |      |     |        |            |                 |                       |                     |                     |
| 5           | 5          | 5.840000E-02 | 7.300000E-02          |        |      |      |     |        |            |                 |                       |                     |                     |
| 6           | 6          | 7.300000E-02 | 8.760000 <b>E</b> -02 |        |      |      |     |        |            |                 |                       | /                   | ſ                   |
| 7           | 7          | 8.760000E-02 | 1.022000E-01          |        |      |      |     |        | e          | 10              | -                     |                     | - F                 |
| 8           | 8          | 1.022000E-01 | 1.168000E-01          |        |      |      |     |        |            |                 |                       |                     |                     |
| 9           | 9          | 1.168000E-01 | 1.314000E-01          | 1      |      |      |     |        | >          | <b>.</b>        |                       |                     |                     |
| 10          | 10         | 1.314000E-01 | 1.460000E-01          | -      |      |      |     |        | ō          | Ō               |                       |                     |                     |
| 11          | 11         | 1.460000E-01 | 1.606000E-01          |        |      |      |     |        | G          |                 |                       |                     |                     |
| 12          | 12         | 1.606000E-01 | 1.752000E-01          |        |      |      |     |        | <b>_</b> _ | _               |                       |                     |                     |
| 13          | 13         | 1.752000E-01 | 1.898000E-01          |        |      |      |     |        |            | 5               | · -                   |                     | E.                  |
| 14          | 14         | 1.898000E-01 | 2.044000E-01          |        |      |      |     |        |            |                 | /                     |                     |                     |
| 15          | 15         | 2.044000E-01 | 2.190000E-01          |        |      |      |     |        |            |                 |                       |                     |                     |
| 16          | 16         | 2.190000E-01 | 2.336000E-01          |        |      |      |     |        |            |                 |                       |                     |                     |
| 17          | 17         | 2.336000E-01 | 2.482000E-01          |        |      |      |     |        |            |                 |                       |                     |                     |
| 18          | 18         | 2.482000E-01 | 2.628000E-01          |        |      |      |     |        |            | _               |                       | Channel             |                     |
| 19          | 19         | 2.628000E-01 | 2.774000E-01          |        |      |      |     |        |            | 0               |                       |                     |                     |
| 20          | 20         | 2.774000E-01 | 2.920000E-01          |        |      |      |     |        |            |                 | 0 200                 | 400 600             | 800 1000            |

